Add new code

master
luevard 1 year ago
parent 0c265b2684
commit 88bbc0764a

BIN
.DS_Store vendored

Binary file not shown.

@ -1,92 +0,0 @@
# Introduction
Voici MMIX, une application IA permettant de prédire à hauteur de 63% la probabilité de victore d'un combat entre deux combattants MMA.
Les statistiques sont issu d'un dataframe disponible sur [Kaggle](https://www.kaggle.com/datasets/rajeevw/ufcdata).
Le model utilisé est une forêt aléatoire.
# Les données
Les données utilisées sont issu d'un dataframe reprenant les statistiques de la plus grande organisation MMA au monde, l'UFC (Ultimate Fighting Championship).
## Qu'est ce que le MMA ?
Le MMA, ou arts martiaux mixtes, est un sport de percussion-préhension (debout et au sol).
C'est un sport mis en avant par la médiatisation, comme le catch il y a quelques années. Il s'est démocratisé il y a peu de temps en France, car il n'est autorisé que depuis 2020.
Avant cette date, ce sport était pratiquer par nos français à l'extérieur de l'héxagone.
Ce sport est très complexe, et seul les combattants maitrisant plusieurs style de combat peuvent gravir les échellons.
Le MMA permet de réunir plein de sorte de style de combat comme la boxe anglaise, le Jiu-jitsu brésilien, la lutte et le sambo.
Le MMA, comme en boxe, permet de combattre seulement contre sa catégorie de poids, sauf exception (devenir double champion, montée de catégories...).
## Et nos français ?
Actuellement à l'UFC, nous possédons 4 dans le top 15 mondial de l'UFC.
[Ciryl Gane](https://www.ufc.com/athlete/ciryl-gane) - Top 2 dans la catégorie Poids Lourd Homme
[Manon Fiorot](https://www.ufc.com/athlete/manon-fiorot) - Top 3 dans la catégorie Poids Mouche Femme
[Nassourdine Imavov](https://www.ufc.com/athlete/nassourdine-imavov) - Top 8 dans la catégorie Poids Moyen Homme
[Benoit Saint Denis](https://www.ufc.com/athlete/mariya-agapova-0) - Top 12 dans la catégorie Poids Léger Homme, il est en série de 3 victoires très impréssionantes et va combattre début avril contre le Top 3 [Dustin Poirier](https://www.ufc.com/athlete/dustin-poirier) qui est une légende du MMA
## Que retenir du dataset ?
Le dataset contient 140 colonnes, il faut donc trier afin de récupérer seulement les informations importantes
**B_avg_BODY_landed** : Nombre moyen de coups au corps réussis par le combattant du coin bleu
**B_avg_HEAD_landed** : Nombre moyen de coups à la tête réussis par le combattant du coin bleu
**B_avg_TD_att** : Nombre moyen de tentatives de takedown par le combattant du coin bleu
**B_avg_TOTAL_STR_landed** : Nombre moyen total de coups réussis par le combattant du coin bleu
**B_avg_opp_BODY_att** : Nombre moyen de tentatives de coups au corps par les adversaires contre le combattant du coin bleu
**B_avg_opp_HEAD_landed** : Nombre moyen de coups à la tête réussis par les adversaires contre le combattant du coin bleu
**B_avg_opp_LEG_landed** : Nombre moyen de coups à la jambe réussis par les adversaires contre le combattant du coin bleu
**B_avg_opp_SIG_STR_att** : Nombre moyen de tentatives de coups significatifs par les adversaires contre le combattant du coin bleu
**B_avg_opp_TOTAL_STR_att** : Nombre moyen total de tentatives de coups par les adversaires contre le combattant du coin bleu
**R_avg_TD_att** : Nombre moyen de tentatives de takedown par le combattant du coin rouge
**R_avg_opp_GROUND_att** : Nombre moyen de tentatives de coups au sol par les adversaires contre le combattant du coin rouge
**R_avg_opp_SIG_STR_landed** : Nombre moyen de coups significatifs réussis par les adversaires contre le combattant du coin rouge
**B_age** : Âge du combattant du coin bleu
**R_age** : Âge du combattant du coin rouge
# Comment lancer le projet ?
Pour lancer le projet, il faut simple exécuter la commande : python3 server.py.
Par contre le model met un peu de temps à charger, 2 minutes environs.
Ensuite, une interface web est disponible à l'adresse http://127.0.0.1:5000/ .
# LISTE DES VISUALISATIONS A PREVOIR
**Taux de victoire par méthode de finition** : Analyser la fréquence à laquelle les combats se terminent par soumission, KO, décision unanime, décision partagée, etc
**Durée moyenne des combats** : Calculer la durée moyenne des combats pour différentes catégories de poids ou pour l'ensemble de l'UFC
**Taux de réussite des takedowns** : Examiner le pourcentage de tentatives de takedown réussies par les combattants
**Taux de réussite des frappes** : Analyser le pourcentage de coups réussis par rapport au nombre total de coups tentés
**Distribution des finitions par round** : Déterminer dans quel round les combats sont le plus souvent terminés (par exemple, soumission au premier round, KO au deuxième round, etc.)
**Variation des performances avec l'âge** : Vérifier s'il existe une corrélation entre l'âge des combattants et leur succès dans l'UFC

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.5 MiB

@ -1,161 +0,0 @@
from flask import Flask, render_template, request
import pandas as pd
from test import * # Assurez-vous d'avoir un fichier predict.py avec votre fonction predict
app = Flask(__name__)
colonnes = ['B_fighter','R_fighter','title_bout',
'B_avg_BODY_landed', 'B_avg_HEAD_landed', 'B_avg_TD_att', 'B_avg_TOTAL_STR_landed',
'B_avg_opp_BODY_att', 'B_avg_opp_HEAD_landed', 'B_avg_opp_LEG_landed',
'B_avg_opp_SIG_STR_att', 'B_avg_opp_TOTAL_STR_att',
'R_avg_BODY_landed', 'R_avg_HEAD_landed', 'R_avg_TD_att', 'R_avg_TOTAL_STR_landed',
'R_avg_opp_BODY_att', 'R_avg_opp_HEAD_landed', 'R_avg_opp_LEG_landed',
'R_avg_opp_SIG_STR_att', 'R_avg_opp_TOTAL_STR_att',
'B_age', 'R_age','date','Winner','weight_class','B_Stance','R_Stance']
# Charger le DataFrame une seule fois pour économiser des ressources
df = pd.read_csv('archive/data.csv') # Assurez-vous de spécifier le bon chemin vers votre fichier de données
# Before April 2001, there were almost no rules in UFC (no judges, no time limits, no rounds, etc.).
#It's up to this precise date that UFC started to implement a set of rules known as
#"Unified Rules of Mixed Martial Arts".
#Therefore, we delete all fights before this major update in UFC's rules history.
# Using this old data would not be representative of current fights, especially since this
#sport has become one of the most regulated due to its mixity and complexity.
limit_date = '2001-04-01'
df = df[(df['date'] > limit_date)]
# Display NaN values
displayNumberOfNaNValues(df)
# Define the list of important features to impute
imp_features = ['R_Weight_lbs', 'R_Height_cms', 'B_Height_cms', 'R_age', 'B_age', 'R_Reach_cms', 'B_Reach_cms']
imp_median = SimpleImputer(missing_values=np.nan, strategy='median')
# Iterate over each feature to impute missing values
for feature in imp_features:
# Fit and transform the feature using median imputation
imp_feature = imp_median.fit_transform(df[feature].values.reshape(-1,1))
# Assign the imputed values back to the DataFrame
df[feature] = imp_feature
# Impute missing values for 'R_Stance' using most frequent strategy
imp_stance_R = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
imp_R_stance = imp_stance_R.fit_transform(df['R_Stance'].values.reshape(-1,1))
# Impute missing values for 'B_Stance' using most frequent strategy
imp_stance_B = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
imp_B_stance = imp_stance_B.fit_transform(df['B_Stance'].values.reshape(-1,1))
# Create DataFrames for imputed stances
df['R_Stance'] = pd.DataFrame(imp_R_stance, columns=['R_Stance'])
df['B_Stance'] = pd.DataFrame(imp_B_stance, columns=['B_Stance'])
df.drop(['Referee', 'location'], axis=1, inplace=True)
# Drop column 'B_draw' and 'R_draw' and 'Draw' fight and 'Catch Weight' fight
df.drop(['B_draw', 'R_draw'], axis=1, inplace=True)
df = df[df['Winner'] != 'Draw']
df = df[df['weight_class'] != 'Catch Weight']
# Remove column when data type is not float or int
dfWithoutString = df.select_dtypes(include=['float64', 'int64'])
plt.figure(figsize=(50, 40))
corr_matrix = dfWithoutString.corr(method='pearson').abs()
sns.heatmap(corr_matrix, annot=True)
## Show the correlation matrix of the dataframe
## Very laggy feature
# plt.show()
# Last year when data fight was not full and correct
fighters = list_fighters(df,'2015-01-01')
df = df[colonnes]
# Get all fight of every fighters
df_train = build_df_all_but_last(df, fighters)
# Get the last fight of every fighters for test the model
df_test = build_df(df, fighters,0)
#Creates a column transformer that encodes specified categorical columns ordinally
#while leaving other columns unchanged
preprocessor = make_column_transformer((OrdinalEncoder(), ['weight_class', 'B_Stance', 'R_Stance']), remainder='passthrough')
#These lines of code utilize LabelEncoder to encode the 'Winner' column into numerical labels for
#both training and testing datasets, followed by the separation of features and target variable for
#further processing.
label_encoder = LabelEncoder()
y_train = label_encoder.fit_transform(df_train['Winner'])
y_test = label_encoder.transform(df_test['Winner'])
X_train, X_test = df_train.drop(['Winner'], axis=1), df_test.drop(['Winner'], axis=1)
# Random Forest composed of 100 decision trees. We optimized parameters using cross-validation
#and GridSearch tool paired together
random_forest = RandomForestClassifier(n_estimators=100,
criterion='entropy',
max_depth=10,
min_samples_split=2,
min_samples_leaf=1,
random_state=0)
# Train data
model = Pipeline([('encoding', preprocessor), ('random_forest', random_forest)])
model.fit(X_train, y_train)
# We use cross-validation with 5-folds to have a more precise accuracy (reduce variation)
accuracies = cross_val_score(estimator=model, X=X_train, y=y_train, cv=5)
print('Accuracy mean : ', accuracies.mean())
print('Accuracy standard deviation : ', accuracies.std())
# Test
y_pred = model.predict(X_test)
print('Testing accuracy : ', accuracy_score(y_test, y_pred), '\n')
# Class definition
target_names = ["Blue","Red"]
print(classification_report(y_test, y_pred, labels=[0,1], target_names=target_names))
# Declare feature
feature_names = [col for col in X_train]
# Set importances for every feature
feature_importances = model['random_forest'].feature_importances_
# Sort importances
indices = np.argsort(feature_importances)[::-1]
n = 30 # maximum feature importances displayed
idx = indices[0:n]
# Standard deviation
std = np.std([tree.feature_importances_ for tree in model['random_forest'].estimators_], axis=0)
# Select tree from model
tree_estimator = model['random_forest'].estimators_[10]
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def make_prediction():
blue_fighter = request.form['blue_fighter']
red_fighter = request.form['red_fighter']
weightclass = request.form['weightclass']
rounds = int(request.form['rounds'])
title_bout = True if request.form['title_bout'] == 'True' else False
prediction_proba = predict(df, model, blue_fighter, red_fighter, weightclass, rounds, title_bout)
# Formatage du résultat pour l'afficher dans le navigateur
result = ""
if prediction_proba is not None:
result = f"The predicted probability of {blue_fighter} winning is {round(prediction_proba[0][0] * 100, 2)}% and the predicted probability of {red_fighter} winning is {round(prediction_proba[0][1] * 100, 2)}%"
return render_template('result.html', result=result)
if __name__ == '__main__':
app.run(debug=True)

@ -1,32 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>UFC Fight Prediction</title>
</head>
<body>
<h1>UFC Fight Prediction</h1>
<form action="/predict" method="post">
<label for="blue_fighter">Blue Fighter:</label>
<input type="text" id="blue_fighter" name="blue_fighter"><br><br>
<label for="red_fighter">Red Fighter:</label>
<input type="text" id="red_fighter" name="red_fighter"><br><br>
<label for="weightclass">Weight Class:</label>
<input type="text" id="weightclass" name="weightclass"><br><br>
<label for="rounds">Number of Rounds:</label>
<input type="number" id="rounds" name="rounds" min="1" max="5" value="3"><br><br>
<label for="title_bout">Title Bout:</label>
<select id="title_bout" name="title_bout">
<option value="True">Yes</option>
<option value="False" selected>No</option>
</select><br><br>
<input type="submit" value="Predict">
</form>
</body>
</html>

@ -1,13 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Prediction Result</title>
</head>
<body>
<h2>Prediction Result</h2>
<p>{{ result }}</p>
<p><a href="/">Make Another Prediction</a></p>
</body>
</html>

@ -1,152 +0,0 @@
import re
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.tree import export_graphviz
from sklearn.tree import plot_tree
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import OrdinalEncoder, LabelEncoder
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
pd.options.display.max_columns = None
pd.options.display.max_rows = None
import sklearn
def displayNumberOfNaNValues(df):
# Create an empty list to store tuples of column index and number of NaN values
na = []
# Loop through each column in the DataFrame
for index, col in enumerate(df):
# Count the number of NaN values in each column and append the index and count to 'na'
na.append((index, df[col].isna().sum()))
# Make a copy of 'na' and sort it based on the count of NaN values in descending order
na.sort(key=lambda x: x[1], reverse=True)
# Iterate through the sorted list of columns
for i in range(len(df.columns)):
# Check if the count of NaN values for the current column is not zero
if na[i][1] != 0:
# Print the column name, count of NaN values, and "NaN"
print(df.columns[na[i][0]], ":", na[i][1], "NaN")
# Calculate and print the total number of features with NaN values
print('Number of features with NaN values:', len([x[1] for x in na if x[1] > 0]))
print("Total NaN in dataframe :" , df.isna().sum().sum())
# i = index of the fighter's fight, 0 means the last fight, -1 means first fight
def select_fight_row(df, name, i):
df_temp = df[(df['R_fighter'] == name) | (df['B_fighter'] == name)] # filter df on fighter's name
df_temp.reset_index(drop=True, inplace=True) # as we created a new temporary dataframe, we have to reset indexes
idx = max(df_temp.index) # get the index of the oldest fight
if i > idx: # if we are looking for a fight that didn't exist, we return nothing
return
arr = df_temp.iloc[i,:].values
return arr
# get all active UFC fighters (according to the limit_date parameter)
def list_fighters(df, limit_date):
# Filter the DataFrame to include only fights occurring after the specified limit date
df_temp = df[df['date'] > limit_date]
# Create a set of all fighters from the red corner ('R_fighter') in the filtered DataFrame
set_R = set(df_temp['R_fighter'])
# Create a set of all fighters from the blue corner ('B_fighter') in the filtered DataFrame
set_B = set(df_temp['B_fighter'])
# Combine the sets of fighters from the red and blue corners to get all unique fighters
fighters = list(set_R.union(set_B))
# Print the number of unique fighters included in the list
# print("Number of fighters: " + str(len(fighters)))
# Return the list of unique fighters
return fighters
def build_df(df, fighters, i):
arr = [select_fight_row(df, fighters[f], i) for f in range(len(fighters)) if select_fight_row(df, fighters[f], i) is not None]
cols = [col for col in df]
df_fights = pd.DataFrame(data=arr, columns=cols)
df_fights.drop_duplicates(inplace=True)
df_fights['title_bout'] = df_fights['title_bout'].map({True: 1, False: 0})
df_fights.drop(['R_fighter', 'B_fighter', 'date'], axis=1, inplace=True)
return df_fights
def build_df_all_but_last(df, fighters):
cols = [col for col in df]
print(len(cols))
df_fights=pd.DataFrame(columns=cols)
for f in range(len(fighters)):
i=0
while True:
fight_row = select_fight_row(df, fighters[f], i)
if fight_row is None:
if not df_fights.empty:
df_fights = df_fights.iloc[:-1]
break
fight_row = list(fight_row)
dfTemp = pd.DataFrame(data=[fight_row], columns=cols)
df_fights = df_fights.dropna(axis=1, how='all')
df_fights = pd.concat([df_fights, dfTemp], ignore_index=True)
i=i+1
df_fights.drop_duplicates(inplace=True)
df_fights = df_fights[~df_fights.apply(lambda row: 'Open Stance' in row.values, axis=1)].reset_index(drop=True)
df_fights['title_bout'] = df_fights['title_bout'].map({True: 1, False: 0})
df_fights.drop(['R_fighter', 'B_fighter', 'date'], axis=1, inplace=True)
return df_fights
def predict(df, pipeline, blue_fighter, red_fighter, weightclass, rounds, title_bout=False):
#We build two dataframes, one for each figther
f1 = df[(df['R_fighter'] == blue_fighter) | (df['B_fighter'] == blue_fighter)].copy()
f1.reset_index(drop=True, inplace=True)
f1 = f1[:1]
f2 = df[(df['R_fighter'] == red_fighter) | (df['B_fighter'] == red_fighter)].copy()
f2.reset_index(drop=True, inplace=True)
f2 = f2[:1]
print("OK 1")
# if the fighter was red/blue corner on his last fight, we filter columns to only keep his statistics (and not the other fighter)
# then we rename columns according to the color of the corner in the parameters using re.sub()
if (f1.loc[0, ['R_fighter']].values[0]) == blue_fighter:
result1 = f1.filter(regex='^R', axis=1).copy() #here we keep the red corner stats
result1.rename(columns = lambda x: re.sub('^R','B', x), inplace=True) #we rename it with "B_" prefix because he's in the blue_corner
else:
result1 = f1.filter(regex='^B', axis=1).copy()
if (f2.loc[0, ['R_fighter']].values[0]) == red_fighter:
result2 = f2.filter(regex='^R', axis=1).copy()
else:
result2 = f2.filter(regex='^B', axis=1).copy()
result2.rename(columns = lambda x: re.sub('^B','R', x), inplace=True)
print("OK 2")
fight = pd.concat([result1, result2], axis = 1) # we concatenate the red and blue fighter dataframes (in columns)
fight.drop(['R_fighter','B_fighter'], axis = 1, inplace = True) # we remove fighter names
fight.insert(0, 'title_bout', title_bout) # we add tittle_bout, weight class and number of rounds data to the dataframe
fight.insert(1, 'weight_class', weightclass)
fight.insert(2, 'no_of_rounds', rounds)
fight['title_bout'] = fight['title_bout'].map({True: 1, False: 0})
print("OK 3")
pred = pipeline.predict(fight)
proba = pipeline.predict_proba(fight)
print("OK 4")
if (pred == 1.0):
print("The predicted winner is", red_fighter, 'with a probability of', round(proba[0][1] * 100, 2), "%")
else:
print("The predicted winner is", blue_fighter, 'with a probability of ', round(proba[0][0] * 100, 2), "%")
return proba
#predict(df, model, 'Kamaru Usman', 'Colby Covington', 'Welterweight', 3, True)
#predict(df, model, 'Leon Edwards', 'Belal Muhammad', 'Welterweight', 3, True)
#predict(df, model, 'Conor McGregor', 'Khabib Nurmagomedov', 'Lightweight', 5, True)
#predict(df, model, 'Conor McGregor', 'Tai Tuivasa', 'Heavyweight', 5, True)
#predict(df,model,'Charles Oliveira','Conor McGregor','Lightweight',5,True)
#predict(df,model,'Charles Oliveira','Khabib Nurmagomedov','Lightweight',5,True)
#predict(df, model, 'Leon Edwards', 'Kamaru Usman', 'Welterweight', 5, True)
Loading…
Cancel
Save