master
luevard 1 year ago
parent 0100b87fea
commit b81bae49b7

@ -1,17 +0,0 @@
# LISTE DES VISUALISATIONS A PREVOIR
**Taux de victoire par méthode de finition** : Analyser la fréquence à laquelle les combats se terminent par soumission, KO, décision unanime, décision partagée, etc
**Durée moyenne des combats** : Calculer la durée moyenne des combats pour différentes catégories de poids ou pour l'ensemble de l'UFC
**Taux de réussite des takedowns** : Examiner le pourcentage de tentatives de takedown réussies par les combattants
**Taux de réussite des frappes** : Analyser le pourcentage de coups réussis par rapport au nombre total de coups tentés
**Distribution des finitions par round** : Déterminer dans quel round les combats sont le plus souvent terminés (par exemple, soumission au premier round, KO au deuxième round, etc.)
**Variation des performances avec l'âge** : Vérifier s'il existe une corrélation entre l'âge des combattants et leur succès dans l'UFC
![LE DARON À ZAK](https://upload.wikimedia.org/wikipedia/commons/e/ec/Dana_White_-_London_2015_%28cropped%29.jpg)
# DANA CACA WHITE

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -1,59 +0,0 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn import metrics
from sklearn.model_selection import train_test_split
dataframe = pd.read_csv("archive/data.csv")
# Change bool values to int (0/1)
dataframe = dataframe.rename(columns={'Winner': 'Blue_Corner_Win'})
dataframe['Blue_Corner_Win'] = (dataframe['Blue_Corner_Win'] == 'Blue').astype(int)
dataframe['title_bout'] = dataframe['title_bout'].astype(int)
# Select datas for Yi (blue corner win ?) and columns for stat
Yi = dataframe[["Blue_Corner_Win"]]
colonnes = ['B_avg_BODY_landed', 'B_avg_HEAD_landed', 'B_avg_TD_att', 'B_avg_TOTAL_STR_landed',
'B_avg_opp_BODY_att', 'B_avg_opp_HEAD_landed', 'B_avg_opp_LEG_landed',
'B_avg_opp_SIG_STR_att', 'B_avg_opp_TOTAL_STR_att', 'R_avg_TD_att', 'R_avg_opp_GROUND_att',
'R_avg_opp_SIG_STR_landed', 'B_age', 'R_age']
Xi = dataframe[colonnes]
Xtrain, Xtest, ytrain, ytest = train_test_split(Xi, Yi,test_size=0.20, random_state=42)
print(Xtrain.shape)
print(Xtest.shape)
Arbre_decision = DecisionTreeClassifier(random_state=0, max_depth=20)
clf = Arbre_decision.fit(Xtrain, Yi)
ypredict = clf.predict(Xtest)
accuracy = accuracy_score(ytest, ypredict)
matriceConfusion = confusion_matrix(ytest, ypredict)
incorrect=matriceConfusion[0][1] + matriceConfusion[1][0]
total = matriceConfusion.sum()
print("\nNumber of incorrect classifications: " + str(incorrect))
print("Number of classifications total: " + str(total))
print("Percent: "+ str((total-incorrect)/total*100))
fighter_data = dataframe[dataframe['R_fighter'] == 'Adrian Yanez']
average_fighter_data = fighter_data[colonnes].mean()
fighter_data_2 = dataframe[dataframe['R_fighter'] == 'Gustavo Lopez']
average_fighter_data_2 = fighter_data_2[colonnes].mean()
combined_features = pd.concat([average_fighter_data, average_fighter_data_2])
prediction = clf.predict([combined_features])
if prediction[0] == 1:
winner = "Blue Corner"
else:
winner = "Red Corner"
print(f"The predicted winner is: {winner}")
Loading…
Cancel
Save