Run file
continuous-integration/drone/push Build is failing Details

master
Hugo LIVET 1 year ago
parent 2d8386405e
commit 54110bdcaf

@ -1,40 +1,16 @@
import preprocessing
import classifier
import analysis
import run
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
import pandas as pd
if __name__ == '__main__':
print("Start learning...")
print("Start learning...")
X_train, X_test, y_train, y_test = preprocessing.process()
print("\nPre-processing... OK")
print("\nTraining models...")
y_pred_knn, knn = classifier.knn_classifier(X_train, y_train, X_test)
print("Knn... OK")
y_pred_dt = classifier.decision_tree(X_train, y_train, X_test)
print("DecisionTree... OK")
y_pred_logistic_reg = classifier.logistic_regression(X_train, y_train, X_test)
print("Logistic Regression... OK")
y_pred_sgd = classifier.sgd_classifier(X_train, y_train, X_test)
print("SGD... OK")
print("\nMetrics calculations...")
print("\n--------------Knn metrics---------------")
knn_accuracy, knn_conf_matrix, knn_class_report = analysis.metrics(y_test, y_pred_knn)
print(f'Accuracy: {knn_accuracy}')
print(f'Confusion Matrix:\n{knn_conf_matrix}')
print(f'Classification Report:\n{knn_class_report}')
analysis.confusion_matrix_view(knn_conf_matrix, knn.classes_)
analysis.roc_curve_view(y_test, y_pred_knn)
analysis.learning_curve_view(knn, X_train, y_train, 10)
run.run_knn(X_train, y_train, X_test, y_test)
#run.run_decision_tree(X_train, y_train, X_test, y_test)
#run.run_logistic_regression(X_train, y_train, X_test, y_test)
#run.run_stochastic_gradient_descent(X_train, y_train, X_test, y_test)

@ -0,0 +1,58 @@
import classifier
import analysis
def run_knn(X_train, y_train, X_test, y_test):
print("\nTraining models...")
y_pred_knn, knn = classifier.knn_classifier(X_train, y_train, X_test)
print("Knn... OK")
print("\nMetrics calculations...")
print("\n--------------Knn metrics---------------")
knn_accuracy, knn_conf_matrix, knn_class_report = analysis.metrics(y_test, y_pred_knn)
print(f'Accuracy: {knn_accuracy}')
print(f'Confusion Matrix:\n{knn_conf_matrix}')
print(f'Classification Report:\n{knn_class_report}')
analysis.confusion_matrix_view(knn_conf_matrix, knn.classes_)
analysis.roc_curve_view(y_test, y_pred_knn)
analysis.learning_curve_view(knn, X_train, y_train, 10)
def run_decision_tree(X_train, y_train, X_test, y_test):
print("\nTraining models...")
y_pred_dt, dt = classifier.decision_tree(X_train, y_train, X_test)
print("DecisionTree... OK")
print("\nMetrics calculations...")
print("\n--------------Decision Tree metrics---------------")
dt_accuracy, dt_conf_matrix, dt_class_report = analysis.metrics(y_test, y_pred_dt)
print(f'Accuracy: {dt_accuracy}')
print(f'Confusion Matrix:\n{dt_conf_matrix}')
print(f'Classification Report:\n{dt_class_report}')
analysis.confusion_matrix_view(dt_conf_matrix, dt.classes_)
analysis.roc_curve_view(y_test, y_pred_dt)
analysis.learning_curve_view(dt, X_train, y_train, 10)
def run_logistic_regression(X_train, y_train, X_test, y_test):
print("\nTraining models...")
y_pred_lr, lr = classifier.logistic_regression(X_train, y_train, X_test)
print("Logistic Regression... OK")
print("\nMetrics calculations...")
print("\n--------------Logistic Regression metrics---------------")
lr_accuracy, lr_conf_matrix, lr_class_report = analysis.metrics(y_test, y_pred_lr)
print(f'Accuracy: {lr_accuracy}')
print(f'Confusion Matrix:\n{lr_conf_matrix}')
print(f'Classification Report:\n{lr_class_report}')
analysis.confusion_matrix_view(lr_conf_matrix, lr.classes_)
analysis.roc_curve_view(y_test, y_pred_lr)
analysis.learning_curve_view(lr, X_train, y_train, 10)
def run_stochastic_gradient_descent(X_train, y_train, X_test, y_test):
print("\nTraining models...")
y_pred_sgd, sgd = classifier.sgd_classifier(X_train, y_train, X_test)
print("SGD... OK")
print("\nMetrics calculations...")
print("\n--------------Logistic Regression metrics---------------")
sgd_accuracy, sgd_conf_matrix, sgd_class_report = analysis.metrics(y_test, y_pred_sgd)
print(f'Accuracy: {sgd_accuracy}')
print(f'Confusion Matrix:\n{sgd_conf_matrix}')
print(f'Classification Report:\n{sgd_class_report}')
analysis.confusion_matrix_view(sgd_conf_matrix, sgd.classes_)
analysis.roc_curve_view(y_test, y_pred_sgd)
analysis.learning_curve_view(sgd, X_train, y_train, 10)
Loading…
Cancel
Save