|
|
|
@ -188,18 +188,26 @@ def allModels(df):
|
|
|
|
|
arrayColumns = [x[i]]
|
|
|
|
|
for j in range(i+1,len(x)):
|
|
|
|
|
xValues = dfTemp[arrayColumns]
|
|
|
|
|
for k in range(0,len(modelArray)):
|
|
|
|
|
if modelArray[k] == "KNN":
|
|
|
|
|
model = model_switch(1)
|
|
|
|
|
elif modelArray[k] == "Classifier":
|
|
|
|
|
model = model_switch(2)
|
|
|
|
|
else:
|
|
|
|
|
model = model_switch(1)
|
|
|
|
|
print("Model used : ",modelArray[k], "---- Case : ",model)
|
|
|
|
|
print("X values used : ",arrayColumns)
|
|
|
|
|
accu = customTrainingRaw(model,xValues,y,3)
|
|
|
|
|
it = [modelArray[k],arrayColumns,accu]
|
|
|
|
|
datas.append(it)
|
|
|
|
|
|
|
|
|
|
# Knn model train
|
|
|
|
|
model = model_switch(1)
|
|
|
|
|
accuKnn = customTrainingRaw(model,xValues,y,3)
|
|
|
|
|
print("Model used : Knn ---- Case : ",model)
|
|
|
|
|
print("X values used : ",arrayColumns)
|
|
|
|
|
|
|
|
|
|
# Tree model train
|
|
|
|
|
model = model_switch(3)
|
|
|
|
|
accuTree = customTrainingRaw(model,xValues,y,3)
|
|
|
|
|
print("Model used : Tree ---- Case : ",model)
|
|
|
|
|
print("X values used : ",arrayColumns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dico = dict()
|
|
|
|
|
setUp = [arrayColumns.copy(),dico]
|
|
|
|
|
setUp[1]['Knn'] = accuKnn
|
|
|
|
|
setUp[1]['Tree'] = accuTree
|
|
|
|
|
datas.append(setUp.copy())
|
|
|
|
|
|
|
|
|
|
arrayColumns.append(x[j])
|
|
|
|
|
return datas
|
|
|
|
|
|
|
|
|
@ -216,25 +224,61 @@ def customTrainingRaw(model, x, y,res=-1):
|
|
|
|
|
print(accuracy_score(ytest, ypredit))
|
|
|
|
|
return accuracy_score(ytest, ypredit)
|
|
|
|
|
|
|
|
|
|
def bestModelFinder(datas):
|
|
|
|
|
maxi = 0
|
|
|
|
|
knnMean= 0
|
|
|
|
|
treeMean= 0
|
|
|
|
|
def showStat(datas):
|
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
|
x_data = []
|
|
|
|
|
y_dataKnn = []
|
|
|
|
|
y_dataTree = []
|
|
|
|
|
for i in range(0,len(datas)):
|
|
|
|
|
if datas[i][0] == 'KNN':
|
|
|
|
|
knnMean += datas[i][2]
|
|
|
|
|
else:
|
|
|
|
|
treeMean += datas[i][2]
|
|
|
|
|
if (datas[i][2] > maxi):
|
|
|
|
|
maxi = datas[i][2]
|
|
|
|
|
x_data.append("/".join(datas[i][0]))
|
|
|
|
|
y_dataKnn.append(datas[i][1]['Knn'])
|
|
|
|
|
y_dataTree.append(datas[i][1]['Tree'])
|
|
|
|
|
|
|
|
|
|
ax.scatter(x_data, y_dataKnn, label=f'Y = Knn')
|
|
|
|
|
ax.scatter(x_data, y_dataTree, label=f'Y = Tree')
|
|
|
|
|
ax.set_xlabel('Axe X')
|
|
|
|
|
ax.set_ylabel('Axe Y')
|
|
|
|
|
ax.legend()
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bestModel(datas):
|
|
|
|
|
max = 0
|
|
|
|
|
min = 1
|
|
|
|
|
for i in range(0,len(datas)):
|
|
|
|
|
if(datas[i][1]['Knn'] < min):
|
|
|
|
|
min = datas[i][1]['Knn']
|
|
|
|
|
resMin = datas[i]
|
|
|
|
|
modelMin = 'Knn'
|
|
|
|
|
elif datas[i][1]['Tree'] < min:
|
|
|
|
|
min = datas[i][1]['Tree']
|
|
|
|
|
resMin = datas[i]
|
|
|
|
|
modelMin = 'Tree'
|
|
|
|
|
|
|
|
|
|
if(datas[i][1]['Knn'] > max):
|
|
|
|
|
max = datas[i][1]['Knn']
|
|
|
|
|
res = datas[i]
|
|
|
|
|
print("BEST CHOICE IS :", res)
|
|
|
|
|
print("Knn mean accuracy_score : ", mean(knnMean))
|
|
|
|
|
print("Knn variance accuracy_score : ", variance(knnMean))
|
|
|
|
|
print("Knn ecart-type accuracy_score : ", stdev(knnMean))
|
|
|
|
|
print("Tree mean accuracy_score : ", mean(treeMean))
|
|
|
|
|
print("Tree variance accuracy_score : ", variance(treeMean))
|
|
|
|
|
print("Tree ecart-type accuracy_score : ", stdev(treeMean))
|
|
|
|
|
model = 'Knn'
|
|
|
|
|
elif datas[i][1]['Tree'] > max:
|
|
|
|
|
max = datas[i][1]['Tree']
|
|
|
|
|
res = datas[i]
|
|
|
|
|
model = 'Tree'
|
|
|
|
|
print("Best model : ",model," columns : ",res[0]," Accuracy : ", res[1][model])
|
|
|
|
|
print("Worst model : ",modelMin," columns : ",resMin[0]," Accuracy : ", resMin[1][model])
|
|
|
|
|
|
|
|
|
|
df = read_dataset('data.csv')
|
|
|
|
|
|
|
|
|
|
# Affiche la répartitions des objets stélaires dans la base de données
|
|
|
|
|
#showData(df)
|
|
|
|
|
|
|
|
|
|
# Affiche le meilleur models avec les meilleurs colonnes entre KNeighborsClassifier et DecisionTreeClassifier
|
|
|
|
|
#datas = allModels(df)
|
|
|
|
|
#bestModel(datas)
|
|
|
|
|
|
|
|
|
|
# Génère un nuage de points affichant l'accuracy du model Knn et TreeClassifier en fonction des colonnes utilisées.
|
|
|
|
|
datas = allModels(df)
|
|
|
|
|
showStat(datas)
|
|
|
|
|
bestModel(datas)
|
|
|
|
|
|
|
|
|
|
main()
|
|
|
|
|
# Affiche un menu permettant de choisir le model à entrainer, ainsi que des stats suplémentaires
|
|
|
|
|
# main()
|
|
|
|
|