add file genModel

master
Enzo 1 year ago
parent 5d9e070045
commit c3c485f8c7

@ -0,0 +1,140 @@
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
import requests
from datetime import datetime, time
import time as sleep_time
# --------------- Fonction ----------------- #
def generateJsonModel(model:LinearRegression):
listCoef = []
listIntercept = []
for i in range(0,len(model.coef_)):
listCoef.append(model.coef_[i][0])
listIntercept.append(model.intercept_[i])
json = {"coef":listCoef,"intercept":listIntercept}
return json
def generateModele(dataJson:dict[str,str]):
# -- Préparation des données
arrayBpm = []
arrayStartTime = []
arrayTimeOfActivity = []
for data in dataJson["Data"]:
arrayBpm.append(data["BpmAvg"])
arrayTimeOfActivity.append(data["TimeOfActivity"])
arrayStartTime.append(data["StartTime"])
# -- DataFrame
data = pd.DataFrame({
"Bpm": arrayBpm,
"TimeOfActivity": arrayTimeOfActivity
})
# -- Régression linéaire
model = LinearRegression()
model.fit(np.array(arrayStartTime).reshape(-1,1),data)
return model
def getUserWithData(url:str):
response = requests.get(urlGetAllData)
if ( response.status_code != 200):
print('problème lors de l extraction des données avec l api !! -> "getUserWithData" (status_code != 200)')
exit()
return response.json
def sendJsonToApi(url,json):
response = requests.post(url,json)
if ( response.status_code != 200):
print('Problème lors de l envoi des données avec l api !! -> "sendJsonToApi" (status_code != 200)')
exit()
return
# ---------------- Main ------------------- #
#urlGetAllData = "https://codefirst.iut.uca.fr/containers/SmartFit-smartfit_api/xxx"
#jsonBack = { "Users" : []}
dataUser = {
"Users": [
{
"Identifiant": "x",
"Info": [
{"Category": "walking", "Data": [{"StartTime": 1234, "BpmAvg": 100,"TimeOfActivity": 1716.5}, {"StartTime" : 123456789,"BpmAvg":100,"TimeOfActivity": 1716.5}]},
{"Category": "Cycling", "Data": [{"StartTime": 1234, "BpmAvg": 100,"TimeOfActivity": 1716.5}, {"StartTime" : 123456087,"BpmAvg":100,"TimeOfActivity": 1716.5}]},
]
},
{ "Identifiant": "x",
"Info": [
{"Category": "walking", "Data": [{"StartTime": 1234, "BpmAvg": 120,"TimeOfActivity": 1716.5}, {"StartTime" : 123456789,"BpmAvg":120,"TimeOfActivity": 1716.5}]},
{"Category": "Cycling", "Data": [{"StartTime": 1234, "BpmAvg": 120,"TimeOfActivity": 1716.5}, {"StartTime" : 123456087,"BpmAvg":120,"TimeOfActivity": 1716.5}]},
]
}
]
}
'''
# -- Call Api
#dataUser = getUserWithData(url=urlGetAllData)
for user in dataUser["Users"]:
jsonTmp = {}
jsonTmp["Identifiant"] = user["Identifiant"]
jsonTmp["Info"] = []
for category in user["Info"]:
#Mettre la condition longueur ici
model = generateModele(category)
jsonTmp["Info"].append({"Category": category["Category"],"Model" : generateJsonModel(model)})
# Add User
jsonBack["Users"].append(jsonTmp)
print(jsonBack)
# -- Send Data to Api
#sendJsonToApi(urlGetAllData,jsonBack)
'''
urlGetAllData = "https://codefirst.iut.uca.fr/containers/SmartFit-smartfit_api/xxx"
while(True):
print("Boucle")
jsonBack = { "Users" : []}
heure_actuelle = datetime.now().time()
if ( heure_actuelle == time(8, 0)):
# --- Call Api
#dataUser = getUserWithData(url=urlGetAllData)
for user in dataUser["Users"]:
jsonTmp = {}
jsonTmp["Identifiant"] = user["Identifiant"]
jsonTmp["Info"] = []
for category in user["Info"]:
#Mettre la condition longueur ici
model = generateModele(category)
jsonTmp["Info"].append({"Category": category["Category"],"Model" : generateJsonModel(model)})
# Add User
jsonBack["Users"].append(jsonTmp)
# -- Send Api
#sendJsonToApi(urlGetAllData,jsonBack)
else :
print("Sleep")
if (heure_actuelle < time(7,0) and heure_actuelle > time(8,0) ):
sleep_time.sleep(3600) # Pause 1 heure
elif ( heure_actuelle < time(7,55) ):
sleep_time.sleep(300) # Pause de 5 minutes
else :
sleep_time.sleep(30) # Pause de 30 secondes

@ -0,0 +1,92 @@
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
import requests
from datetime import datetime, time
import time as sleep_time
# --------------- Fonction ----------------- #
def generateJsonModel(model:LinearRegression):
listCoef = []
listIntercept = []
for i in range(0,len(model.coef_)):
listCoef.append(model.coef_[i][0])
listIntercept.append(model.intercept_[i])
json = {"coef":listCoef,"intercept":listIntercept}
return json
def generateModele(dataJson:dict[str,str]):
# -- Préparation des données
arrayBpm = []
arrayStartTime = []
arrayTimeOfActivity = []
for data in dataJson["Data"]:
arrayBpm.append(data["BpmAvg"])
arrayTimeOfActivity.append(data["TimeOfActivity"])
arrayStartTime.append(data["StartTime"])
# -- DataFrame
data = pd.DataFrame({
"Bpm": arrayBpm,
"TimeOfActivity": arrayTimeOfActivity
})
# -- Régression linéaire
model = LinearRegression()
model.fit(np.array(arrayStartTime).reshape(-1,1),data)
return model
def getUserWithData(url:str):
response = requests.get(urlGetAllData)
if ( response.status_code != 200):
print('problème lors de l extraction des données avec l api !! -> "getUserWithData" (status_code != 200)')
exit()
return response.json
def sendJsonToApi(url,json):
response = requests.post(url,json)
if ( response.status_code != 200):
print('Problème lors de l envoi des données avec l api !! -> "sendJsonToApi" (status_code != 200)')
exit()
return
# ---------------- Main ------------------- #
# Mettre la route de l'api ICI
urlGetAllData = "https://codefirst.iut.uca.fr/containers/SmartFit-smartfit_api/IA"
while(True):
print("Boucle")
jsonBack = { "Users" : []}
heure_actuelle = datetime.now().time()
if ( heure_actuelle == time(8, 0)):
# --- Call Api
dataUser = getUserWithData(url=urlGetAllData)
for user in dataUser["Users"]:
jsonTmp = {}
jsonTmp["Identifiant"] = user["Identifiant"]
jsonTmp["Info"] = []
for category in user["Info"]:
#Mettre la condition longueur ici
model = generateModele(category)
jsonTmp["Info"].append({"Category": category["Category"],"Model" : generateJsonModel(model)})
# Add User
jsonBack["Users"].append(jsonTmp)
# -- Send Api
sendJsonToApi(urlGetAllData,jsonBack)
else :
print("Sleep")
if (heure_actuelle < time(7,0) and heure_actuelle > time(8,0) ):
sleep_time.sleep(3600) # Pause 1 heure
elif ( heure_actuelle < time(7,55) ):
sleep_time.sleep(300) # Pause de 5 minutes
else :
sleep_time.sleep(30) # Pause de 30 secondes
Loading…
Cancel
Save