pull/8/head^2
parent
0f4a5d5932
commit
a4e9ddded6
|
@ -0,0 +1,57 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pickle
|
||||
import sklearn_json as skljson
|
||||
|
||||
|
||||
|
||||
|
||||
def generateJson(model:LinearRegression):
|
||||
listCoef = []
|
||||
listIntercept = []
|
||||
for i in range(0,len(model.coef_)):
|
||||
listCoef.append(model.coef_[i][0])
|
||||
listIntercept.append(model.intercept_[i])
|
||||
json = {"coef":listCoef,"intercept":listIntercept}
|
||||
return json
|
||||
|
||||
|
||||
|
||||
|
||||
# Load data from CSV
|
||||
df = pd.read_csv("data\\data_emple.csv")
|
||||
|
||||
startTime = df.iloc[0:len(df),6].values.reshape(-1,1)
|
||||
|
||||
category = df.iloc[0:len(df),0].values
|
||||
#print("Category : ",category)
|
||||
|
||||
data = pd.DataFrame({
|
||||
"Distance": df.iloc[:, 1].values,
|
||||
"Time": df.iloc[:, 2].values,
|
||||
"Denivele": df.iloc[:, 3].values,
|
||||
"Speed": df.iloc[:, 4].values,
|
||||
"Bpm": df.iloc[:, 5].values
|
||||
})
|
||||
|
||||
model = LinearRegression()
|
||||
|
||||
model.fit(startTime,data)
|
||||
|
||||
datePredict = np.array([[1271]])
|
||||
prediction = model.predict(datePredict)
|
||||
|
||||
print("Prédiction -> ")
|
||||
#print(prediction)
|
||||
print("Distance : ",float(prediction[0][0]))
|
||||
print("Time : ",float(prediction[0][1]))
|
||||
print("Denivele : ",float(prediction[0][2]))
|
||||
print("Speed : ",float(prediction[0][3]))
|
||||
print("BPM : ",float(prediction[0][4]))
|
||||
|
||||
|
||||
generateJson(model=model)
|
||||
|
||||
|
Loading…
Reference in new issue