Ajouter 'sae2.04'

master
Remi NEVEU 12 months ago
parent c6943caeee
commit 2c1551588f

@ -0,0 +1,261 @@
#sae2.04
import pandas as pd
import getpass
import matplotlib.pyplot as plt
import numpy as np
from sqlalchemy import create_engine, exc, text
df = pd.read_csv('spotify_songs.csv', sep=',', encoding="latin-1")
print(df)
print(df.columns)
'''
renvoie ['track_id', 'track_name', 'track_artist', 'track_popularity',
'track_album_id', 'track_album_name', 'track_album_release_date',
'playlist_name', 'playlist_id', 'playlist_genre', 'playlist_subgenre',
'danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
'duration_ms']
'''
df = df.drop(columns=['key','mode','instrumentalness'])
# Ces colonnes sont inutiles ici
df = df.dropna()
print(df['duration_ms'])
df['duration_ms'] = pd.to_timedelta(df['duration_ms'], unit='ms')
df = df.rename(columns={"duration_ms": "duration_m"})
print(df['duration_m'])
# Nous avons ici modifier la durée des chansons afin qu'elles soyent en minutes dans la base
df = df.drop(151)
# Cette ligne ne fonctionnant pas, nous la supprimons
dfT = df[['track_id', 'track_name', 'track_popularity', 'duration_m', 'danceability', 'energy', 'loudness','speechiness', 'acousticness', 'liveness', 'valence', 'tempo', 'track_artist', 'track_album_id','playlist_id']]
dfA = df[['track_album_id', 'track_album_name', 'track_album_release_date', 'track_artist']]
dfP = df[['playlist_id', 'playlist_name', 'playlist_genre', 'playlist_subgenre']]
dfArtist = df[['track_artist']]
# Nous créons des dataframes qui seront plus tard les tables de notre base
dfArtist = dfArtist.drop_duplicates()
dfA = dfA.drop_duplicates()
dfA['track_album_id'] = dfA['track_album_id'].drop_duplicates()
dfA = dfA.dropna()
dfP = dfP.drop_duplicates()
dfP['playlist_id'] = dfP['playlist_id'].drop_duplicates()
dfP = dfP.dropna()
dfT = dfT.drop_duplicates()
dfT['track_id'] = dfT['track_id'].drop_duplicates()
dfT = dfT.dropna()
# Nous traitons les données pour enlever les doublons et les lignes NaN
co = None
engine = create_engine("postgresql://reneveu:achanger@londres/dbreneveu")
try :
co = engine.connect()
# Création de la base de données
"""
co.execute(text('''DROP TABLE IF EXISTS Artist CASCADE;'''))
co.execute(text('''CREATE TABLE Artist(
track_artist varchar(150),
PRIMARY KEY (track_artist)
);'''))
co.execute(text('''DROP TABLE IF EXISTS Album CASCADE;'''))
co.execute(text('''CREATE TABLE Album(
track_album_id varchar(150),
track_album_name varchar(500),
track_album_release_date varchar(15),
track_artist varchar(150) REFERENCES Artist,
PRIMARY KEY (track_album_id)
);'''))
co.execute(text('''DROP TABLE IF EXISTS Playlist CASCADE;'''))
co.execute(text('''CREATE TABLE Playlist(
playlist_id varchar(150) PRIMARY KEY,
playlist_name varchar(150),
playlist_genre varchar(50),
playlist_subgenre varchar(150)
);'''))
co.execute(text('''DROP TABLE IF EXISTS Track CASCADE;'''))
co.execute(text('''CREATE TABLE Track(
track_id varchar(150),
track_name varchar(150),
track_popularity numeric,
duration_m time,
danceability numeric,
energy numeric,
loudness numeric,
speechiness numeric,
acousticness numeric,
liveness numeric,
valence numeric,
tempo numeric,
track_artist varchar(150) REFERENCES Artist,
track_album_id varchar(150) REFERENCES Album,
playlist_id varchar(150) REFERENCES Playlist,
PRIMARY KEY (track_id)
);'''))
for row in dfArtist.itertuples():
co.execute(text('''INSERT INTO Artist VALUES(:1);'''),
{'1': row.track_artist})
co.execute(text('''SELECT * FROM Artist;'''))
co.commit()
for row in dfA.itertuples():
co.execute(text('''INSERT INTO Album VALUES(:1, :2, :3, :4);'''),
{'1': row.track_album_id, '2': row.track_album_name, '3': row.track_album_release_date, '4': row.track_artist})
co.execute(text('''SELECT * FROM Album;'''))
co.commit()
for row in dfP.itertuples():
co.execute(text('''INSERT INTO Playlist VALUES(:1, :2, :3, :4);'''),
{'1': row.playlist_id, '2': row.playlist_name, '3': row.playlist_genre, '4': row.playlist_subgenre})
co.execute(text('''SELECT * FROM Playlist;'''))
co.commit()
for row in dfT.itertuples():
co.execute(text('''INSERT INTO Track VALUES(:1, :2, :3, :4, :5, :6, :7, :8, :9, :10, :11, :12, :13, :14, :15);'''),
{'1': row.track_id, '2': row.track_name, '3': row.track_popularity, '4': row.duration_m, '5': row.danceability, '6': row.energy, '7': row.loudness,
'8': row.speechiness, '9': row.acousticness, '10': row.liveness, '11': row.valence, '12': row.tempo, '13': row.track_artist, '14': row.track_album_id,
'15': row.playlist_id})
co.execute(text('''SELECT * FROM Track;'''))
co.commit()
"""
# Tentative de graphique
pop = pd.read_sql(text('''SELECT substr(a.track_album_release_date, 1,4) date,
t.track_name nom,
t.track_popularity pop
FROM Track t
JOIN Album a ON a.track_album_id = t.track_album_id
WHERE t.track_popularity > 90
GROUP BY date,nom,pop ORDER BY date,nom,pop;'''), con=co)
#(SELECT track_name FROM Track NATURAL JOIN Album a2 WHERE substr(a2.track_album_release_date, 1,4) = ) and track_popularity = max(t.track_popularity)
# pop["track_album_release_date"]=pop["track_album_release_date"].astype('str')
fig = pop.plot(x='date', y=['nom', 'pop'], style=['o-', 'x--'])
fig.set_title("Popularité de titre par année")
fig.legend(['Titre', 'Popularité'])
fig.set_xlabel("Année")
fig.set_ylabel("Popularité")
fig.set_ylim(0)
plt.show()
test = pd.read_sql(text('''SELECT substr(a.track_album_release_date, 1,4) date, t.track_name nom FROM Track t
NATURAL JOIN Album a
GROUP BY date, nom ORDER BY date,nom LIMIT 1;'''), con=co)
test["date"]=test["date"].astype('int')
fig = test.plot(x='nom', y='date', legend=False , kind='bar')
plt.xticks(rotation=0)
# fig = test.plot(x='annee', y='consototale')
fig.set_title("date des titres")
fig.set_xlabel("Année")
fig.set_ylabel("Titre")
fig.set_ylim(0)
plt.show()
except exc.SQLAlchemyError as e:
print(e)
finally :
if co is not None:
co.close()
# Création d'un graphique montrant les pourcentage de chaque genre par playlist
df['playlist_genre'].value_counts().plot.pie(ylabel='', autopct='%1.1f%%')
plt.show()
# Travail d'Adryen
# Afficher la version de pandas
print(pd.__version__)
# Lecture du fichier csv
df_pop = pd.read_csv("spotify_songs.csv")
print(df_pop.head(5))
# Supprimer les lignes avec des valeurs manquantes
df_pop = df_pop.dropna()
# Trier le DataFrame par artiste
sorted_df = df_pop.sort_values(by='track_artist')
artistes = sorted_df["track_artist"].unique()
# Créer une liste des artistes uniques
print(artistes)
# Créer une figure pour le premier graphique
plt.figure(figsize=(10, 6))
# Extraire les noms des chansons et leur popularité
names = sorted_df["track_name"]
popularity = sorted_df["track_popularity"]
# Filtrer les chansons avec une popularité >= 90
filtered_names = [name for name, pop in zip(names, popularity) if pop >= 90]
filtered_popularity = [pop for pop in popularity if pop >= 90]
# Tracer le premier graphique en barres horizontales
plt.barh(filtered_names, filtered_popularity, color='skyblue')
plt.xlabel('Indice de popularité')
plt.ylabel('Chansons')
plt.title('Analyse des indices de popularité des chansons')
plt.grid(True)
plt.show()
# Créer un dictionnaire pour stocker la popularité par artiste
popularity_by_artist = {}
# Remplir le dictionnaire avec les indices de popularité correspondant à chaque artiste
for name, pop in zip(names, popularity):
artiste = sorted_df.loc[sorted_df['track_name'] == name, 'track_artist'].iloc[0]
if artiste not in popularity_by_artist:
popularity_by_artist[artiste] = []
popularity_by_artist[artiste].append(pop)
# Créer un dictionnaire pour stocker la popularité moyenne par artiste
average_popularity_by_artist = {}
# Calculer la popularité moyenne pour chaque artiste
for artiste, popularity_list in popularity_by_artist.items():
average_popularity = np.mean(popularity_list)
average_popularity_by_artist[artiste] = average_popularity
# Filtrer les artistes avec une popularité moyenne supérieure à 85
selected_artists = {artiste: popularity for artiste, popularity in average_popularity_by_artist.items() if popularity > 80}
# Créer un graphique pour la deuxième analyse
plt.figure(figsize=(10, 6))
# Tracer un graphique des indices de popularité moyens des artistes sélectionnés
plt.bar(selected_artists.keys(), selected_artists.values(), color='skyblue')
plt.xlabel('Artistes')
plt.ylabel('Popularité moyenne')
plt.title('Analyse de la popularité moyenne des artistes (Popularité moyenne > 85)')
plt.grid(True)
plt.xticks(rotation=90) # Pour faire pivoter les étiquettes des axes x
plt.tight_layout() # Ajuster automatiquement les sous-graphiques pour éviter les chevauchements
plt.show()
Loading…
Cancel
Save