tp2-3 maths + BDD

master
antoine.perederii 2 years ago
parent 2b9759c524
commit 25ec73f531

@ -0,0 +1,49 @@
import pandas as pd
import psycopg2 as psy
import getpass
import matplotlib.pyplot as plt
data = pd. read_csv (r'vgsales.csv')
df = pd.DataFrame(data)
df = df.drop_duplicates()
co = None
try:
co = psy. connect(host='londres',
database ='dbanperederi',
user='anperederi',
password = getpass.getpass("Mot de passe:"))
datafr = pd.read_sql('''SELECT ROUND(AVG(global_sales),2) as vente_moyennes, year
FROM VGSales
WHERE genre = 'Adventure' and year != 'NaN'
GROUP BY year
ORDER by year;''', con=co)
fig = datafr.plot(x='year', y='vente_moyennes', kind='line', title='Evolution des ventes globales des jeux daventure', figsize=(10, 5), legend=True, fontsize=12)
plt.show()
datafr = pd.read_sql('''SELECT SUM(global_sales) as total_vente, year
FROM VGSales
WHERE genre = 'Adventure' AND year != 'NaN'
GROUP BY year
ORDER by year;''', con=co)
fig = datafr.plot(x='year', y='total_vente', kind='line', title='Evolution des ventes globales des jeux', figsize=(10, 5), legend=True, fontsize=12)
plt.show()
datafr = pd.read_sql('''SELECT SUM(global_sales) as total_vente, year
FROM VGSales
WHERE year != 'NaN'
GROUP BY year
ORDER by year;''', con=co)
fig = datafr.plot(x='year', y='total_vente', kind='line', title='Evolution des ventes globales des jeux', figsize=(10, 5), legend=True, fontsize=12)
plt.show()
except (Exception , psy.DatabaseError ) as error :
print ( error )
finally :
if co is not None:
co.close ()

@ -0,0 +1,82 @@
import pandas as pd
import psycopg2 as psy
import getpass
import matplotlib.pyplot as plt
data = pd. read_csv (r'vgsales.csv')
df = pd.DataFrame(data)
df = df.drop_duplicates()
co = None
try:
co = psy. connect(host='londres',
database ='dbanperederi',
user='anperederi',
password = getpass.getpass("Mot de passe:"))
#Q2 Afficher sous forme de courbe les résultats de la requête précédente.
datafr = pd.read_sql('''SELECT platform, SUM(eu_sales) as total_vente
FROM VGSales
GROUP BY platform;''', con=co)
fig = datafr.plot(x='platform', y='total_vente', kind='line', title='Ventes par plateforme en europe', figsize=(10, 5), legend=True, fontsize=12)
fig.set_xlabel('Platforme')
fig.set_ylabel('Ventes (en millions)')
fig.set_xticks(datafr.index)
fig.set_xticklabels(datafr['platform'], rotation=45)
plt.show()
#Q4
datafr = pd.read_sql('''SELECT platform, SUM(eu_sales) as total_vente
FROM VGSales
GROUP BY platform;''', con=co)
fig = datafr.plot(x='platform', y='total_vente', kind='bar', title='Ventes par plateforme en europe', figsize=(10, 5), legend=True, fontsize=12)
fig.set_xlabel('Platforme')
fig.set_ylabel('Ventes (en millions)')
fig.set_xticks(datafr.index)
fig.set_xticklabels(datafr['platform'], rotation=45)
plt.show()
#Q5
datafr = pd.read_sql('''SELECT platform, SUM(na_sales) as total_vente_na, SUM(eu_sales) as total_vente_eu, SUM(jp_sales) as total_vente_jp, SUM(other_sales) as total_vente_autre
FROM VGSales
GROUP BY platform;''', con=co)
fig = datafr.plot(x='platform', y=['total_vente_na', 'total_vente_eu', 'total_vente_jp', 'total_vente_autre'], kind='line', title='Ventes par plateforme', figsize=(10, 5), legend=True, fontsize=12)
fig.set_xlabel('Platforme')
fig.set_ylabel('Ventes (en millions)')
fig.set_xticks(datafr.index)
fig.set_xticklabels(datafr['platform'], rotation=45)
plt.show()
#Q6
datafr = pd.read_sql('''SELECT platform, SUM(na_sales) as total_vente_na, SUM(eu_sales) as total_vente_eu, SUM(jp_sales) as total_vente_jp, SUM(other_sales) as total_vente_autre
FROM VGSales
GROUP BY platform;''', con=co)
fig = datafr.plot(x='platform', y=['total_vente_na', 'total_vente_eu', 'total_vente_jp', 'total_vente_autre'], kind='line', title='Ventes par plateforme', figsize=(10, 5), legend=True, fontsize=12, style=['-', '--', '-.', ':'])
fig.set_xlabel('Platforme')
fig.set_ylabel('Ventes (en millions)')
fig.set_xticks(datafr.index)
fig.set_xticklabels(datafr['platform'], rotation=45)
plt.show()
#Q7
datafr = pd.read_sql('''SELECT platform, SUM(na_sales) as total_vente_na, SUM(eu_sales) as total_vente_eu, SUM(jp_sales) as total_vente_jp, SUM(other_sales) as total_vente_autre
FROM VGSales
GROUP BY platform;''', con=co)
fig = datafr.plot(x='platform', y=['total_vente_na', 'total_vente_eu', 'total_vente_jp', 'total_vente_autre'], kind='bar', title='Ventes par plateforme', figsize=(10, 5), legend=True, fontsize=12, style=['b', 'g', 'r', 'c'])
fig.set_xlabel('Platforme')
fig.set_ylabel('Ventes (en millions)')
fig.set_xticks(datafr.index)
fig.set_xticklabels(datafr['platform'], rotation=45)
plt.show()
except (Exception , psy.DatabaseError ) as error :
print ( error )
finally :
if co is not None:
co.close ()

@ -0,0 +1,50 @@
import pandas as pd
import psycopg2 as psy
import getpass
import matplotlib.pyplot as plt
data = pd. read_csv (r'vgsales.csv')
df = pd.DataFrame(data)
df = df.drop_duplicates()
co = None
try:
co = psy. connect(host='londres',
database ='dbanperederi',
user='anperederi',
password = getpass.getpass("Mot de passe:"))
#Q2 Afficher sous forme de courbe les résultats de la requête précédente.
datafr = pd.read_sql('''SELECT na_sales as total_vente_na, eu_sales as total_vente_eu, jp_sales as total_vente_jp, other_sales as total_vente_autre
FROM VGSales
WHERE name = 'Mario Kart 64';''', con=co)
fig = datafr.transpose().plot(kind='bar', title='Ventes par plateforme', figsize=(10, 5), legend=True, fontsize=12)
fig.set_xticklabels(['NA', 'EU', 'JP', 'OTHER'], rotation=45)
plt.show()
#Q3 Même question sous forme de diagramme “camembert”. Les noms des zones devront être à côté
#de la tranche concernée.
datafr = pd.read_sql('''SELECT na_sales as total_vente_na, eu_sales as total_vente_eu, jp_sales as total_vente_jp, other_sales as total_vente_autre
FROM VGSales
WHERE name = 'Mario Kart 64';''', con=co)
fig = datafr.transpose().plot(kind='pie', legend=False ,title='Ventes par plateforme', figsize=(10, 5), fontsize=12, subplots=True)
plt.show()
#Q4 Même question mais le pourcentage de ventes dans chaque zone doit apparaître à côté de la
#tranche concernée et le nom de la zone doit apparaître dans la légende
datafr = pd.read_sql('''SELECT na_sales as total_vente_na, eu_sales as total_vente_eu, jp_sales as total_vente_jp, other_sales as total_vente_autre
FROM VGSales
WHERE name = 'Mario Kart 64';''', con=co)
fig = datafr.transpose().plot(kind='pie',title='Ventes par plateforme', figsize=(10, 5), fontsize=12, subplots=True, autopct='%1.1f%%', legend=False)
plt.show()
except (Exception , psy.DatabaseError ) as error :
print ( error )
finally :
if co is not None:
co.close ()

@ -0,0 +1,95 @@
import pandas as pd
import psycopg2 as psy
import getpass
import matplotlib.pyplot as plt
data = pd. read_csv (r'vgsales.csv')
df = pd.DataFrame(data)
df = df.drop_duplicates()
co = None
try:
co = psy. connect(host='londres',
database ='dbanperederi',
user='anperederi',
password = getpass.getpass("Mot de passe:"))
#Q1 Écrire la requête SQL permettant de calculer le total des ventes de jeux dans le monde par genre.
datafr = pd.read_sql('''SELECT round(sum(global_sales),2) as total_vente, genre
FROM VGSales
GROUP BY genre
ORDER BY total_vente DESC;''', con=co)
fig = datafr .plot.pie(y='total_vente', labels=datafr['genre'], autopct='%1.1f%%', figsize=(5, 5), legend=False) # Generation du graphique
plt.show () # Affichage
#Q2 Écrire la requête SQL permettant de calculer e pourcentage des ventes dans le monde par genre.
datafr = pd.read_sql('''SELECT (sum(global_sales)/(SELECT sum(global_sales) FROM VGSales))*100 as pourcentage
FROM VGSales
GROUP BY genre
ORDER BY pourcentage DESC;''', con=co)
fig = datafr.plot(kind='pie', legend=False ,title='Ventes par plateforme', figsize=(5, 5), fontsize=12, subplots=True)
plt.show()
# fig = datafr .plot.pie(y='pourcentage', labels=datafr['genre'], autopct='%1.1f%%', figsize=(5, 5), legend=False) # Generation du graphique
# plt.show () # Affichage
#Q3 Afficher les résultats sous forme de diagramme camembert.
datafr = pd.read_sql('''SELECT (sum(global_sales)/(SELECT sum(global_sales) FROM VGSales))*100 as pourcentage
FROM VGSales
GROUP BY genre
ORDER BY pourcentage DESC;''', con=co)
fig = datafr.plot(kind='pie', legend=False ,title='Ventes par plateforme', figsize=(5, 5), fontsize=12, subplots=True)
plt.show()
# fig = datafr .plot.pie(y='pourcentage', labels=datafr['genre'], autopct='%1.1f%%', figsize=(5, 5), legend=False) # Generation du graphique
# plt.show () # Affichage
#Q4 Afficher le total des ventes par genre sous forme de diagrammes camembert de façon à voir sur la même figure :
# un camembert représentant les ventes avant lannée 1990 (exclue),
# un camembert représentant les ventes entre 1990 et 1999,
# un camembert représentant les ventes entre 2000 et 2009,
# un camembert représentant les ventes à partir de 2010.
datafr1 = pd.read_sql('''SELECT (sum(global_sales)/(SELECT sum(global_sales) FROM VGSales WHERE year < 1990))*100 as pourcentage
FROM VGSales
WHERE year < 1990
GROUP BY genre
ORDER BY pourcentage DESC;''', con=co)
datafr2 = pd.read_sql('''SELECT (sum(global_sales)/(SELECT sum(global_sales) FROM VGSales WHERE year >= 1990 AND year < 2000))*100 as pourcentage
FROM VGSales
WHERE year >= 1990 AND year <= 1999
GROUP BY genre
ORDER BY pourcentage DESC;''', con=co)
datafr3 = pd.read_sql('''SELECT (sum(global_sales)/(SELECT sum(global_sales) FROM VGSales WHERE year >= 2000 AND year < 2010))*100 as pourcentage
FROM VGSales
WHERE year >= 2000 AND year <= 2009
GROUP BY genre
ORDER BY pourcentage DESC;''', con=co)
datafr4 = pd.read_sql('''SELECT (sum(global_sales)/(SELECT sum(global_sales) FROM VGSales WHERE year >= 2010))*100 as pourcentage
FROM VGSales
WHERE year >= 2010
GROUP BY genre
ORDER BY pourcentage DESC;''', con=co)
_, axes = plt.subplots(nrows=2, ncols=2)
fig = datafr1.plot(y=0, kind='pie', legend=False ,title='Ventes par plateforme', ax=axes[0,0])
fig = datafr2.plot(y=0, kind='pie', legend=False ,title='Ventes par plateforme', ax=axes[0,1])
fig = datafr3.plot(y=0, kind='pie', legend=False ,title='Ventes par plateforme', ax=axes[1,0])
fig = datafr4.plot(y=0, kind='pie', legend=False ,title='Ventes par plateforme', ax=axes[1,1])
plt.show()
# fig = datafr .plot.pie(y='pourcentage', labels=datafr['genre'], autopct='%1.1f%%', figsize=(5, 5), legend=False) # Generation du graphique
# plt.show () # Affichage
except (Exception , psy.DatabaseError ) as error :
print ( error )
finally :
if co is not None:
co.close ()

@ -0,0 +1,56 @@
import pandas as pd
import psycopg2 as psy
import getpass
data = pd. read_csv (r'vgsales.csv')
df = pd.DataFrame(data)
df = df.drop_duplicates()
co = None
try:
co = psy. connect(host='londres',
database ='dbanperederi',
user='anperederi',
password = getpass.getpass("Mot de passe:"))
curs = co.cursor()
curs. execute ('''DROP TABLE IF EXISTS VGSales ;''')
curs. execute ('''CREATE TABLE VGSales (
name varchar (160) ,
platform varchar(160) ,
year numeric (4),
genre varchar (160) ,
publisher varchar (160) ,
na_sales numeric (5,2) DEFAULT 0,
eu_sales numeric (5,2) DEFAULT 0,
jp_sales numeric (5,2) DEFAULT 0,
other_sales numeric (5,2) DEFAULT 0,
global_sales numeric (5,2) DEFAULT 0 ,
PRIMARY KEY (name, platform, year)
);''')
for row in df.itertuples ():
curs. execute ('''INSERT INTO VGSales VALUES (%s ,%s ,%s ,%s, %s ,%s ,%s ,%s, %s ,%s);''',
(row.Name , row.Platform , row.Year , row.Genre , row.Publisher , row.NA_Sales , row.EU_Sales , row.JP_Sales , row.Other_Sales , row.Global_Sales ))
#curs.execute('''UPDATE''')
co.commit ()
curs.close ()
except (Exception , psy.DatabaseError ) as error :
print ( error )
finally :
if co is not None:
co.close ()
"""
Evolution du script:
Ajout de la fonction drop_duplicates() pour supprimer les doublons dans le fichier csv.
"""

@ -0,0 +1,38 @@
import pandas as pd
import psycopg2 as psy
import getpass
co = None
try:
co = psy.connect (host='londres',
database ='dbanperederi',
user='anperederi',
password = getpass.getpass ("Mot de passe:"))
df = pd.read_sql('''SELECT *
FROM VGSales ;''', con=co)
print(df)
except (Exception , psy. DatabaseError ) as error :
print ( error )
finally :
if co is not None:
co. close ()
#======================RESULTAT======================#
"""
name platform year genre ... eu_sales jp_sales other_sales global_sales
0 Wii Sports Wii 2006.0 Sports ... 29.02 3.77 8.46 82.74
1 Super Mario Bros. NES 1985.0 Platform ... 3.58 6.81 0.77 40.24
2 Wii Sports Resort Wii 2009.0 Sports ... 11.01 3.28 2.96 33.00
3 Tetris GB 1989.0 Puzzle ... 2.26 4.22 0.58 30.26
4 New Super Mario Bros. DS 2006.0 Platform ... 9.23 6.50 2.90 30.01
.. ... ... ... ... ... ... ... ... ...
16591 K-1 Grand Prix PS 1999.0 Fighting ... 0.01 0.00 0.00 0.02
16592 Carmageddon: Max Damage XOne 2016.0 Action ... 0.01 0.00 0.00 0.02
16593 The Ultimate Battle of the Sexes Wii 2010.0 Misc ... 0.01 0.00 0.00 0.02
16594 Help Wanted: 50 Wacky Jobs (jp sales) Wii 2008.0 Simulation ... 0.01 0.01 0.00 0.02
16595 SCORE International Baja 1000: The Official Game PS2 2008.0 Racing ... 0.00 0.00 0.00 0.00
[16596 rows x 10 columns]
"""

@ -0,0 +1,179 @@
import matplotlib.pyplot as plt
--Q5 La colonne Global_Sales est redondante car elle peut être calculée grâce aux autres colonnes.
--Cela pose dailleurs problème puisque certaines données sont incohérentes. Écrire une requête SQL
--permettant de détecter les lignes incohérentes
SELECT COUNT(global_sales) FROM VGSales WHERE global_sales != (na_sales + eu_sales + jp_sales + other_sales);
/*
count
-------
4548
*/
--Q6 Écrire une requête SQL permettant de recalculer la colonne Global_sales en fonction des
--autres colonnes pour ces lignes problématiques
Update VGSales SET global_sales=(na_sales + eu_sales + jp_sales + other_sales) WHERE global_sales != (na_sales + eu_sales + jp_sales + other_sales);
/*
UPDATE 4548
*/
--2
--Q1 Écrire la requête SQL permettant de calculer les ventes moyennes par année de sortie des jeux, pour les jeux du genre Adventure
SELECT ROUND(AVG(global_sales),2), year
FROM VGSales
WHERE genre = 'Adventure' and year != 'NaN'
GROUP BY year
ORDER by year;
/*
=========================RESULTAT=========================
round | year
-------+------
0.40 | 1983
4.38 | 1987
1.12 | 1991
3.06 | 1992
0.07 | 1993
0.94 | 1994
0.05 | 1995
0.25 | 1996
0.36 | 1997
0.39 | 1998
0.40 | 1999
0.19 | 2000
0.44 | 2001
0.26 | 2002
0.18 | 2003
0.22 | 2004
0.20 | 2005
0.16 | 2006
0.29 | 2007
0.15 | 2008
0.15 | 2009
0.11 | 2010
0.15 | 2011
0.10 | 2012
0.10 | 2013
0.08 | 2014
0.15 | 2015
0.05 | 2016
(28 lignes)
*/
--Q2 Afficher le résultat de la requête précédente sous forme de courbe.
--Q3 Même question pour le total des ventes par année de sortie des jeux
SELECT SUM(global_sales) as total_vente, year
FROM VGSales
WHERE genre = 'Adventure' and year != 'NaN'
GROUP BY year
ORDER by year;
/*
=========================RESULTAT=========================
total_vente | year
-------------+------
0.40 | 1983
4.38 | 1987
2.24 | 1991
12.24 | 1992
0.07 | 1993
3.74 | 1994
0.71 | 1995
4.18 | 1996
4.97 | 1997
9.04 | 1998
7.61 | 1999
2.96 | 2000
*/
--Q4 Même question pour lensemble des jeux.
SELECT SUM(global_sales) as total_vente, year
FROM VGSales
WHERE year != 'NaN'
GROUP BY year
ORDER by year;
/*
=========================RESULTAT=========================
total_vente | year
-------------+------
11.38 | 1980
35.33 | 1981
28.88 | 1982
16.80 | 1983
50.35 | 1984
53.49 | 1985
37.08 | 1986
21.70 | 1987
47.21 | 1988
73.45 | 1989
49.37 | 1990
32.23 | 1991
*/
--PARTIE3
--Q1 Écrire la requête SQL permettant de calculer le total des ventes en Europe par plateforme.
SELECT platform, SUM(eu_sales) as total_vente
FROM VGSales
GROUP BY platform;
/*
=========================RESULTAT=========================
platform | total_vente
----------+-------------
TG16 | 0.00
PSP | 67.83
2600 | 5.47
PS4 | 123.70
N64 | 41.06
GBA | 74.60
GG | 0.00
PSV | 16.33
XB | 60.38
DC | 1.69
XOne | 44.77
PS2 | 339.11
*/
--Q4 Écrire la requête SQL permettant de calculer le total des ventes aux Etats-Unis, en Europe,
--au Japon et ailleurs par plateforme.
SELECT platform, SUM(na_sales) as total_vente_na, SUM(eu_sales) as total_vente_eu, SUM(jp_sales) as total_vente_jp, SUM(other_sales) as total_vente_autre
FROM VGSales
GROUP BY platform;
/*
=========================RESULTAT=========================
platform | total_vente_na | total_vente_eu | total_vente_jp | total_vente_autre
----------+----------------+----------------+----------------+-------------------
TG16 | 0.00 | 0.00 | 0.16 | 0.00
PSP | 108.53 | 67.83 | 76.79 | 42.19
2600 | 90.25 | 5.47 | 0.00 | 0.91
PS4 | 96.80 | 123.70 | 14.30 | 43.36
N64 | 137.82 | 41.06 | 34.22 | 4.38
GBA | 187.54 | 74.60 | 47.33 | 7.73
GG | 0.00 | 0.00 | 0.04 | 0.00
PSV | 16.20 | 16.33 | 20.96 | 8.45
XB | 186.69 | 60.38 | 1.38 | 8.72
DC | 5.43 | 1.69 | 8.56 | 0.27
XOne | 83.19 | 44.77 | 0.34 | 11.92
PS2 | 581.97 | 339.11 | 139.64 | 193.44
*/
--Q5 Afficher sous forme de graphique les résultats de la requête précédente avec une courbe par
--zone géographique. Cette fois-ci la légende devra apparaître.
--PARTIE4
--Q1 Écrire la requête SQL de récupérer les ventes (Etats-unis, Europe, Japon, Autre) du jeu Mario Kart 64.
SELECT SUM(na_sales) as total_vente_na, SUM(eu_sales) as total_vente_eu, SUM(jp_sales) as total_vente_jp, SUM(other_sales) as total_vente_autre
FROM VGSales
WHERE name = 'Mario Kart 64';
/*
=========================RESULTAT=========================
total_vente_na | total_vente_eu | total_vente_jp | total_vente_autre
----------------+----------------+----------------+-------------------
5.55 | 1.94 | 2.23 | 0.15
*/
--PARTIE5
--Q1 Écrire la requête SQL permettant de calculer le total des ventes de jeux dans le monde par genre.
SELECT round(sum(global_sales),2) as total_vente, genre
FROM VGSales
GROUP BY genre
ORDER BY total_vente DESC;

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

@ -0,0 +1,415 @@
age,distance métro,magasins proches,prix au m2
32.0,84.87881999999999,10,37.9
19.5,306.5947,9,42.2
13.3,561.9845,5,47.3
13.3,561.9845,5,54.8
5.0,390.5684,5,43.1
7.1,2175.03,3,32.1
34.5,623.4731,7,40.3
20.3,287.6025,6,46.7
31.7,5512.0380000000005,1,18.8
17.9,1783.18,3,22.1
34.8,405.2134,1,41.4
6.3,90.45606,9,58.1
13.0,492.2313,5,39.3
20.4,2469.645,4,23.8
13.2,1164.838,4,34.3
35.7,579.2083,2,50.5
0.0,292.9978,6,70.1
17.7,350.8515,1,37.4
16.9,368.1363,8,42.3
1.5,23.382839999999998,7,47.7
4.5,2275.877,3,29.3
10.5,279.1726,7,51.6
14.7,1360.139,1,24.6
10.1,279.1726,7,47.9
39.6,480.6977,4,38.8
29.3,1487.868,2,27.0
3.1,383.8624,5,56.2
10.4,276.449,5,33.6
19.2,557.4780000000001,4,47.0
7.1,451.2438,5,57.1
25.9,4519.69,0,22.1
29.6,769.4034,7,25.0
37.9,488.5727,1,34.2
16.5,323.655,6,49.3
15.4,205.36700000000002,7,55.1
13.9,4079.4179999999997,0,27.3
14.7,1935.009,2,22.9
12.0,1360.139,1,25.3
3.1,577.9615,6,47.7
16.2,289.3248,5,46.2
13.6,4082.015,0,15.9
16.8,4066.587,0,18.2
36.1,519.4617,5,34.7
34.4,512.7871,6,34.1
2.7,533.4762,4,53.9
36.6,488.8193,8,38.3
21.7,463.9623,9,42.0
35.9,640.7391,3,61.5
24.2,4605.749,0,13.4
29.4,4510.359,1,13.2
21.7,512.5487,4,44.2
31.3,1758.406,1,20.7
32.1,1438.579,3,27.0
13.3,492.2313,5,38.9
16.1,289.3248,5,51.7
31.7,1160.632,0,13.7
33.6,371.2495,8,41.9
3.5,56.47425,7,53.5
30.3,4510.359,1,22.6
13.3,336.0532,5,42.4
11.0,1931.207,2,21.3
5.3,259.6607,6,63.2
17.2,2175.877,3,27.7
2.6,533.4762,4,55.0
17.5,995.7554,0,25.3
40.1,123.7429,8,44.3
1.0,193.5845,6,50.7
8.5,104.8101,5,56.8
30.4,464.223,6,36.2
12.5,561.9845,5,42.0
6.6,90.45606,9,59.0
35.5,640.7391,3,40.8
32.5,424.5442,8,36.3
13.8,4082.015,0,20.0
6.8,379.5575,10,54.4
12.3,1360.139,1,29.5
35.9,616.4004,3,36.8
20.5,2185.1279999999997,3,25.6
38.2,552.4371,2,29.8
18.0,1414.8370000000002,1,26.5
11.8,533.4762,4,40.3
30.8,377.7956,6,36.8
13.2,150.9347,7,48.1
25.3,2707.3920000000003,3,17.7
15.1,383.2805,7,43.7
0.0,338.9679,9,50.8
1.8,1455.7979999999998,1,27.0
16.9,4066.587,0,18.3
8.9,1406.43,0,48.0
23.0,3947.945,0,25.3
0.0,274.0144,1,45.4
9.1,1402.016,0,43.2
20.6,2469.645,4,21.8
31.9,1146.329,0,16.1
40.9,167.5989,5,41.0
8.0,104.8101,5,51.8
6.4,90.45606,9,59.5
28.4,617.4424,3,34.6
16.4,289.3248,5,51.0
6.4,90.45606,9,62.2
17.5,964.7496,4,38.2
12.7,170.1289,1,32.9
1.1,193.5845,6,54.4
0.0,208.3905,6,45.7
32.7,392.4459,6,30.5
0.0,292.9978,6,71.0
17.2,189.5181,8,47.1
12.2,1360.139,1,26.6
31.4,592.5006,2,34.1
4.0,2147.376,3,28.4
8.1,104.8101,5,51.6
33.3,196.6172,7,39.4
9.9,2102.427,3,23.1
14.8,393.2606,6,7.6
30.6,143.8383,8,53.3
20.6,737.9161,2,46.4
30.9,6396.283,1,12.2
13.6,4197.349,0,13.0
25.3,1583.7220000000002,3,30.6
16.6,289.3248,5,59.6
13.3,492.2313,5,31.3
13.6,492.2313,5,48.0
31.5,414.9476,4,32.5
0.0,185.4296,0,45.5
9.9,279.1726,7,57.4
1.1,193.5845,6,48.6
38.6,804.6897,4,62.9
3.8,383.8624,5,55.0
41.3,124.9912,6,60.7
38.5,216.8329,7,41.0
29.6,535.5269999999999,8,37.5
4.0,2147.376,3,30.7
26.6,482.7581,5,37.5
18.0,373.3937,8,39.5
33.4,186.9686,6,42.2
18.9,1009.235,0,20.8
11.4,390.5684,5,46.8
13.6,319.0708,6,47.4
10.0,942.4664,0,43.5
12.9,492.2313,5,42.5
16.2,289.3248,5,51.4
5.1,1559.8270000000002,3,28.9
19.8,640.6071,5,37.5
13.6,492.2313,5,40.1
11.9,1360.139,1,28.4
2.1,451.2438,5,45.5
0.0,185.4296,0,52.2
3.2,489.8821,8,43.2
16.4,3780.59,0,45.1
34.9,179.4538,8,39.7
35.8,170.7311,7,48.5
4.9,387.7721,9,44.7
12.0,1360.139,1,28.9
6.5,376.1709,6,40.9
16.9,4066.587,0,20.7
13.8,4082.015,0,15.6
30.7,1264.73,0,18.3
16.1,815.9314,4,35.6
11.6,390.5684,5,39.4
15.5,815.9314,4,37.4
3.5,49.66105,8,57.8
19.2,616.4004,3,39.6
16.0,4066.587,0,11.6
8.5,104.8101,5,55.5
0.0,185.4296,0,55.2
13.7,1236.5639999999999,1,30.6
0.0,292.9978,6,73.6
28.2,330.0854,8,43.4
27.6,515.1122,5,37.4
8.4,1962.628,1,23.5
24.0,4527.687,0,14.4
3.6,383.8624,5,58.8
6.6,90.45606,9,58.1
41.3,401.8807,4,35.1
4.3,432.0385,7,45.2
30.2,472.1745,3,36.5
13.9,4573.779,0,19.2
33.0,181.0766,9,42.0
13.1,1144.4360000000001,4,36.7
14.0,438.8513,1,42.6
26.9,4449.27,0,15.5
11.6,201.8939,8,55.9
13.5,2147.376,3,23.6
17.0,4082.015,0,18.8
14.1,2615.465,0,21.8
31.4,1447.286,3,21.5
20.9,2185.1279999999997,3,25.7
8.9,3078.176,0,22.0
34.8,190.0392,8,44.3
16.3,4066.587,0,20.5
35.3,616.5735,8,42.3
13.2,750.0704,2,37.8
43.8,57.58945,7,42.7
9.7,421.47900000000004,5,49.3
15.2,3771.895,0,29.3
15.2,461.1016,5,34.6
22.8,707.9067,2,36.6
34.4,126.7286,8,48.2
34.0,157.6052,7,39.1
18.2,451.6419,8,31.6
17.4,995.7554,0,25.5
13.1,561.9845,5,45.9
38.3,642.6985,3,31.5
15.6,289.3248,5,46.1
18.0,1414.8370000000002,1,26.6
12.8,1449.7220000000002,3,21.4
22.2,379.5575,10,44.0
38.5,665.0636,3,34.2
11.5,1360.139,1,26.2
34.8,175.6294,8,40.9
5.2,390.5684,5,52.2
0.0,274.0144,1,43.5
17.6,1805.665,2,31.1
6.2,90.45606,9,58.0
18.1,1783.18,3,20.9
19.2,383.7129,8,48.1
37.8,590.9292,1,39.7
28.0,372.6242,6,40.8
13.6,492.2313,5,43.8
29.3,529.7771,8,40.2
37.2,186.5101,9,78.3
9.0,1402.016,0,38.5
30.6,431.1114,10,48.5
9.1,1402.016,0,42.3
34.5,324.9419,6,46.0
1.1,193.5845,6,49.0
16.5,4082.015,0,12.8
32.4,265.0609,8,40.2
11.9,3171.329,0,46.6
31.0,1156.412,0,19.0
4.0,2147.376,3,33.4
16.2,4074.736,0,14.7
27.1,4412.765,1,17.4
39.7,333.3679,9,32.4
8.0,2216.612,4,23.9
12.9,250.63099999999997,7,39.3
3.6,373.8389,10,61.9
13.0,732.8528,0,39.0
12.8,732.8528,0,40.6
18.1,837.7233,0,29.7
11.0,1712.632,2,28.8
13.7,250.63099999999997,7,41.4
2.0,2077.39,3,33.4
32.8,204.1705,8,48.2
4.8,1559.8270000000002,3,21.7
7.5,639.6198,5,40.8
16.4,389.8219,6,40.6
21.7,1055.067,0,23.1
19.0,1009.235,0,22.3
18.0,6306.153,1,15.0
39.2,424.7132,7,30.0
31.7,1159.454,0,13.8
5.9,90.45606,9,52.7
30.4,1735.595,2,25.9
1.1,329.9747,5,51.8
31.5,5512.0380000000005,1,17.4
14.6,339.2289,1,26.5
17.3,444.1334,1,43.9
0.0,292.9978,6,63.3
17.7,837.7233,0,28.8
17.0,1485.0970000000002,4,30.7
16.2,2288.011,3,24.4
15.9,289.3248,5,53.0
3.9,2147.376,3,31.7
32.6,493.657,7,40.6
15.7,815.9314,4,38.1
17.8,1783.18,3,23.7
34.7,482.7581,5,41.1
17.2,390.5684,5,40.1
17.6,837.7233,0,23.0
10.8,252.5822,1,117.5
17.7,451.6419,8,26.5
13.0,492.2313,5,40.5
13.2,170.1289,1,29.3
27.5,394.0173,7,41.0
1.5,23.382839999999998,7,49.7
19.1,461.1016,5,34.0
21.2,2185.1279999999997,3,27.7
0.0,208.3905,6,44.0
2.6,1554.25,3,31.1
2.3,184.3302,6,45.4
4.7,387.7721,9,44.8
2.0,1455.7979999999998,1,25.6
33.5,1978.671,2,23.5
15.0,383.2805,7,34.4
30.1,718.2937,3,55.3
5.9,90.45606,9,56.3
19.2,461.1016,5,32.9
16.6,323.6912,6,51.0
13.9,289.3248,5,44.5
37.7,490.3446,0,37.0
3.4,56.47425,7,54.4
17.5,395.6747,5,24.5
12.6,383.2805,7,42.5
26.4,335.5273,6,38.1
18.2,2179.59,3,21.8
12.5,1144.4360000000001,4,34.1
34.9,567.0349,4,28.5
16.7,4082.015,0,16.7
33.2,121.7262,10,46.1
2.5,156.2442,4,36.9
38.0,461.7848,0,35.7
16.5,2288.011,3,23.2
38.3,439.7105,0,38.4
20.0,1626.0829999999999,3,29.4
16.2,289.3248,5,55.0
14.4,169.9803,1,50.2
10.3,3079.89,0,24.7
16.4,289.3248,5,53.0
30.3,1264.73,0,19.1
16.4,1643.499,2,24.7
21.3,537.7971,4,42.2
35.4,318.5292,9,78.0
8.3,104.8101,5,42.8
3.7,577.9615,6,41.6
15.6,1756.411,2,27.3
13.3,250.63099999999997,7,42.0
15.6,752.7669,2,37.5
7.1,379.5575,10,49.8
34.6,272.6783,5,26.9
13.5,4197.349,0,18.6
16.9,964.7496,4,37.7
12.9,187.4823,1,33.1
28.6,197.1338,6,42.5
12.4,1712.632,2,31.3
36.6,488.8193,8,38.1
4.1,56.47425,7,62.1
3.5,757.3377,3,36.7
15.9,1497.713,3,23.6
13.6,4197.349,0,19.2
32.0,1156.777,0,12.8
25.6,4519.69,0,15.6
39.8,617.7134,2,39.6
7.8,104.8101,5,38.4
30.0,1013.341,5,22.8
27.3,337.6016,6,36.5
5.1,1867.233,2,35.6
31.3,600.8604,5,30.9
31.5,258.186,9,36.3
1.7,329.9747,5,50.4
33.6,270.8895,0,42.9
13.0,750.0704,2,37.0
5.7,90.45606,9,53.5
33.5,563.2854,8,46.6
34.6,3085.17,0,41.2
0.0,185.4296,0,37.9
13.2,1712.632,2,30.8
17.4,6488.021,1,11.2
4.6,259.6607,6,53.7
7.8,104.8101,5,47.0
13.2,492.2313,5,42.3
4.0,2180.245,3,28.6
18.4,2674.961,3,25.7
4.1,2147.376,3,31.3
12.2,1360.139,1,30.1
3.8,383.8624,5,60.7
10.3,211.4473,1,45.3
0.0,338.9679,9,44.9
1.1,193.5845,6,45.1
5.6,2408.993,0,24.7
32.9,87.30221999999999,10,47.1
41.4,281.205,8,63.3
17.1,967.4,4,40.0
32.3,109.9455,10,48.0
35.3,614.1394,7,33.1
17.3,2261.4320000000002,4,29.5
14.2,1801.5439999999999,1,24.8
15.0,1828.319,2,20.9
18.2,350.8515,1,43.1
20.2,2185.1279999999997,3,22.8
15.9,289.3248,5,42.1
4.1,312.8963,5,51.7
33.9,157.6052,7,41.5
0.0,274.0144,1,52.2
5.4,390.5684,5,49.5
21.7,1157.988,0,23.8
14.7,1717.193,2,30.5
3.9,49.66105,8,56.8
37.3,587.8877,8,37.4
0.0,292.9978,6,69.7
14.1,289.3248,5,53.3
8.0,132.5469,9,47.3
16.3,3529.5640000000003,0,29.3
29.1,506.1144,4,40.3
16.1,4066.587,0,12.9
18.3,82.88643,10,46.6
0.0,185.4296,0,55.3
16.2,2103.555,3,25.6
10.4,2251.938,4,27.3
40.9,122.3619,8,67.7
32.8,377.8302,9,38.6
6.2,1939.749,1,31.3
42.7,443.80199999999996,6,35.3
16.9,967.4,4,40.3
32.6,4136.271,1,24.7
21.2,512.5487,4,42.5
37.1,918.6357,1,31.9
13.1,1164.838,4,32.2
14.7,1717.193,2,23.0
12.7,170.1289,1,37.3
26.8,482.7581,5,35.5
7.6,2175.03,3,27.7
12.7,187.4823,1,28.5
30.9,161.942,9,39.7
16.4,289.3248,5,41.2
23.0,130.9945,6,37.2
1.9,372.1386,7,40.5
5.2,2408.993,0,22.3
18.5,2175.744,3,28.1
13.7,4082.015,0,15.4
5.6,90.45606,9,50.0
18.8,390.9696,7,40.6
8.1,104.8101,5,52.5
6.5,90.45606,9,63.9
1 age distance métro magasins proches prix au m2
2 32.0 84.87881999999999 10 37.9
3 19.5 306.5947 9 42.2
4 13.3 561.9845 5 47.3
5 13.3 561.9845 5 54.8
6 5.0 390.5684 5 43.1
7 7.1 2175.03 3 32.1
8 34.5 623.4731 7 40.3
9 20.3 287.6025 6 46.7
10 31.7 5512.0380000000005 1 18.8
11 17.9 1783.18 3 22.1
12 34.8 405.2134 1 41.4
13 6.3 90.45606 9 58.1
14 13.0 492.2313 5 39.3
15 20.4 2469.645 4 23.8
16 13.2 1164.838 4 34.3
17 35.7 579.2083 2 50.5
18 0.0 292.9978 6 70.1
19 17.7 350.8515 1 37.4
20 16.9 368.1363 8 42.3
21 1.5 23.382839999999998 7 47.7
22 4.5 2275.877 3 29.3
23 10.5 279.1726 7 51.6
24 14.7 1360.139 1 24.6
25 10.1 279.1726 7 47.9
26 39.6 480.6977 4 38.8
27 29.3 1487.868 2 27.0
28 3.1 383.8624 5 56.2
29 10.4 276.449 5 33.6
30 19.2 557.4780000000001 4 47.0
31 7.1 451.2438 5 57.1
32 25.9 4519.69 0 22.1
33 29.6 769.4034 7 25.0
34 37.9 488.5727 1 34.2
35 16.5 323.655 6 49.3
36 15.4 205.36700000000002 7 55.1
37 13.9 4079.4179999999997 0 27.3
38 14.7 1935.009 2 22.9
39 12.0 1360.139 1 25.3
40 3.1 577.9615 6 47.7
41 16.2 289.3248 5 46.2
42 13.6 4082.015 0 15.9
43 16.8 4066.587 0 18.2
44 36.1 519.4617 5 34.7
45 34.4 512.7871 6 34.1
46 2.7 533.4762 4 53.9
47 36.6 488.8193 8 38.3
48 21.7 463.9623 9 42.0
49 35.9 640.7391 3 61.5
50 24.2 4605.749 0 13.4
51 29.4 4510.359 1 13.2
52 21.7 512.5487 4 44.2
53 31.3 1758.406 1 20.7
54 32.1 1438.579 3 27.0
55 13.3 492.2313 5 38.9
56 16.1 289.3248 5 51.7
57 31.7 1160.632 0 13.7
58 33.6 371.2495 8 41.9
59 3.5 56.47425 7 53.5
60 30.3 4510.359 1 22.6
61 13.3 336.0532 5 42.4
62 11.0 1931.207 2 21.3
63 5.3 259.6607 6 63.2
64 17.2 2175.877 3 27.7
65 2.6 533.4762 4 55.0
66 17.5 995.7554 0 25.3
67 40.1 123.7429 8 44.3
68 1.0 193.5845 6 50.7
69 8.5 104.8101 5 56.8
70 30.4 464.223 6 36.2
71 12.5 561.9845 5 42.0
72 6.6 90.45606 9 59.0
73 35.5 640.7391 3 40.8
74 32.5 424.5442 8 36.3
75 13.8 4082.015 0 20.0
76 6.8 379.5575 10 54.4
77 12.3 1360.139 1 29.5
78 35.9 616.4004 3 36.8
79 20.5 2185.1279999999997 3 25.6
80 38.2 552.4371 2 29.8
81 18.0 1414.8370000000002 1 26.5
82 11.8 533.4762 4 40.3
83 30.8 377.7956 6 36.8
84 13.2 150.9347 7 48.1
85 25.3 2707.3920000000003 3 17.7
86 15.1 383.2805 7 43.7
87 0.0 338.9679 9 50.8
88 1.8 1455.7979999999998 1 27.0
89 16.9 4066.587 0 18.3
90 8.9 1406.43 0 48.0
91 23.0 3947.945 0 25.3
92 0.0 274.0144 1 45.4
93 9.1 1402.016 0 43.2
94 20.6 2469.645 4 21.8
95 31.9 1146.329 0 16.1
96 40.9 167.5989 5 41.0
97 8.0 104.8101 5 51.8
98 6.4 90.45606 9 59.5
99 28.4 617.4424 3 34.6
100 16.4 289.3248 5 51.0
101 6.4 90.45606 9 62.2
102 17.5 964.7496 4 38.2
103 12.7 170.1289 1 32.9
104 1.1 193.5845 6 54.4
105 0.0 208.3905 6 45.7
106 32.7 392.4459 6 30.5
107 0.0 292.9978 6 71.0
108 17.2 189.5181 8 47.1
109 12.2 1360.139 1 26.6
110 31.4 592.5006 2 34.1
111 4.0 2147.376 3 28.4
112 8.1 104.8101 5 51.6
113 33.3 196.6172 7 39.4
114 9.9 2102.427 3 23.1
115 14.8 393.2606 6 7.6
116 30.6 143.8383 8 53.3
117 20.6 737.9161 2 46.4
118 30.9 6396.283 1 12.2
119 13.6 4197.349 0 13.0
120 25.3 1583.7220000000002 3 30.6
121 16.6 289.3248 5 59.6
122 13.3 492.2313 5 31.3
123 13.6 492.2313 5 48.0
124 31.5 414.9476 4 32.5
125 0.0 185.4296 0 45.5
126 9.9 279.1726 7 57.4
127 1.1 193.5845 6 48.6
128 38.6 804.6897 4 62.9
129 3.8 383.8624 5 55.0
130 41.3 124.9912 6 60.7
131 38.5 216.8329 7 41.0
132 29.6 535.5269999999999 8 37.5
133 4.0 2147.376 3 30.7
134 26.6 482.7581 5 37.5
135 18.0 373.3937 8 39.5
136 33.4 186.9686 6 42.2
137 18.9 1009.235 0 20.8
138 11.4 390.5684 5 46.8
139 13.6 319.0708 6 47.4
140 10.0 942.4664 0 43.5
141 12.9 492.2313 5 42.5
142 16.2 289.3248 5 51.4
143 5.1 1559.8270000000002 3 28.9
144 19.8 640.6071 5 37.5
145 13.6 492.2313 5 40.1
146 11.9 1360.139 1 28.4
147 2.1 451.2438 5 45.5
148 0.0 185.4296 0 52.2
149 3.2 489.8821 8 43.2
150 16.4 3780.59 0 45.1
151 34.9 179.4538 8 39.7
152 35.8 170.7311 7 48.5
153 4.9 387.7721 9 44.7
154 12.0 1360.139 1 28.9
155 6.5 376.1709 6 40.9
156 16.9 4066.587 0 20.7
157 13.8 4082.015 0 15.6
158 30.7 1264.73 0 18.3
159 16.1 815.9314 4 35.6
160 11.6 390.5684 5 39.4
161 15.5 815.9314 4 37.4
162 3.5 49.66105 8 57.8
163 19.2 616.4004 3 39.6
164 16.0 4066.587 0 11.6
165 8.5 104.8101 5 55.5
166 0.0 185.4296 0 55.2
167 13.7 1236.5639999999999 1 30.6
168 0.0 292.9978 6 73.6
169 28.2 330.0854 8 43.4
170 27.6 515.1122 5 37.4
171 8.4 1962.628 1 23.5
172 24.0 4527.687 0 14.4
173 3.6 383.8624 5 58.8
174 6.6 90.45606 9 58.1
175 41.3 401.8807 4 35.1
176 4.3 432.0385 7 45.2
177 30.2 472.1745 3 36.5
178 13.9 4573.779 0 19.2
179 33.0 181.0766 9 42.0
180 13.1 1144.4360000000001 4 36.7
181 14.0 438.8513 1 42.6
182 26.9 4449.27 0 15.5
183 11.6 201.8939 8 55.9
184 13.5 2147.376 3 23.6
185 17.0 4082.015 0 18.8
186 14.1 2615.465 0 21.8
187 31.4 1447.286 3 21.5
188 20.9 2185.1279999999997 3 25.7
189 8.9 3078.176 0 22.0
190 34.8 190.0392 8 44.3
191 16.3 4066.587 0 20.5
192 35.3 616.5735 8 42.3
193 13.2 750.0704 2 37.8
194 43.8 57.58945 7 42.7
195 9.7 421.47900000000004 5 49.3
196 15.2 3771.895 0 29.3
197 15.2 461.1016 5 34.6
198 22.8 707.9067 2 36.6
199 34.4 126.7286 8 48.2
200 34.0 157.6052 7 39.1
201 18.2 451.6419 8 31.6
202 17.4 995.7554 0 25.5
203 13.1 561.9845 5 45.9
204 38.3 642.6985 3 31.5
205 15.6 289.3248 5 46.1
206 18.0 1414.8370000000002 1 26.6
207 12.8 1449.7220000000002 3 21.4
208 22.2 379.5575 10 44.0
209 38.5 665.0636 3 34.2
210 11.5 1360.139 1 26.2
211 34.8 175.6294 8 40.9
212 5.2 390.5684 5 52.2
213 0.0 274.0144 1 43.5
214 17.6 1805.665 2 31.1
215 6.2 90.45606 9 58.0
216 18.1 1783.18 3 20.9
217 19.2 383.7129 8 48.1
218 37.8 590.9292 1 39.7
219 28.0 372.6242 6 40.8
220 13.6 492.2313 5 43.8
221 29.3 529.7771 8 40.2
222 37.2 186.5101 9 78.3
223 9.0 1402.016 0 38.5
224 30.6 431.1114 10 48.5
225 9.1 1402.016 0 42.3
226 34.5 324.9419 6 46.0
227 1.1 193.5845 6 49.0
228 16.5 4082.015 0 12.8
229 32.4 265.0609 8 40.2
230 11.9 3171.329 0 46.6
231 31.0 1156.412 0 19.0
232 4.0 2147.376 3 33.4
233 16.2 4074.736 0 14.7
234 27.1 4412.765 1 17.4
235 39.7 333.3679 9 32.4
236 8.0 2216.612 4 23.9
237 12.9 250.63099999999997 7 39.3
238 3.6 373.8389 10 61.9
239 13.0 732.8528 0 39.0
240 12.8 732.8528 0 40.6
241 18.1 837.7233 0 29.7
242 11.0 1712.632 2 28.8
243 13.7 250.63099999999997 7 41.4
244 2.0 2077.39 3 33.4
245 32.8 204.1705 8 48.2
246 4.8 1559.8270000000002 3 21.7
247 7.5 639.6198 5 40.8
248 16.4 389.8219 6 40.6
249 21.7 1055.067 0 23.1
250 19.0 1009.235 0 22.3
251 18.0 6306.153 1 15.0
252 39.2 424.7132 7 30.0
253 31.7 1159.454 0 13.8
254 5.9 90.45606 9 52.7
255 30.4 1735.595 2 25.9
256 1.1 329.9747 5 51.8
257 31.5 5512.0380000000005 1 17.4
258 14.6 339.2289 1 26.5
259 17.3 444.1334 1 43.9
260 0.0 292.9978 6 63.3
261 17.7 837.7233 0 28.8
262 17.0 1485.0970000000002 4 30.7
263 16.2 2288.011 3 24.4
264 15.9 289.3248 5 53.0
265 3.9 2147.376 3 31.7
266 32.6 493.657 7 40.6
267 15.7 815.9314 4 38.1
268 17.8 1783.18 3 23.7
269 34.7 482.7581 5 41.1
270 17.2 390.5684 5 40.1
271 17.6 837.7233 0 23.0
272 10.8 252.5822 1 117.5
273 17.7 451.6419 8 26.5
274 13.0 492.2313 5 40.5
275 13.2 170.1289 1 29.3
276 27.5 394.0173 7 41.0
277 1.5 23.382839999999998 7 49.7
278 19.1 461.1016 5 34.0
279 21.2 2185.1279999999997 3 27.7
280 0.0 208.3905 6 44.0
281 2.6 1554.25 3 31.1
282 2.3 184.3302 6 45.4
283 4.7 387.7721 9 44.8
284 2.0 1455.7979999999998 1 25.6
285 33.5 1978.671 2 23.5
286 15.0 383.2805 7 34.4
287 30.1 718.2937 3 55.3
288 5.9 90.45606 9 56.3
289 19.2 461.1016 5 32.9
290 16.6 323.6912 6 51.0
291 13.9 289.3248 5 44.5
292 37.7 490.3446 0 37.0
293 3.4 56.47425 7 54.4
294 17.5 395.6747 5 24.5
295 12.6 383.2805 7 42.5
296 26.4 335.5273 6 38.1
297 18.2 2179.59 3 21.8
298 12.5 1144.4360000000001 4 34.1
299 34.9 567.0349 4 28.5
300 16.7 4082.015 0 16.7
301 33.2 121.7262 10 46.1
302 2.5 156.2442 4 36.9
303 38.0 461.7848 0 35.7
304 16.5 2288.011 3 23.2
305 38.3 439.7105 0 38.4
306 20.0 1626.0829999999999 3 29.4
307 16.2 289.3248 5 55.0
308 14.4 169.9803 1 50.2
309 10.3 3079.89 0 24.7
310 16.4 289.3248 5 53.0
311 30.3 1264.73 0 19.1
312 16.4 1643.499 2 24.7
313 21.3 537.7971 4 42.2
314 35.4 318.5292 9 78.0
315 8.3 104.8101 5 42.8
316 3.7 577.9615 6 41.6
317 15.6 1756.411 2 27.3
318 13.3 250.63099999999997 7 42.0
319 15.6 752.7669 2 37.5
320 7.1 379.5575 10 49.8
321 34.6 272.6783 5 26.9
322 13.5 4197.349 0 18.6
323 16.9 964.7496 4 37.7
324 12.9 187.4823 1 33.1
325 28.6 197.1338 6 42.5
326 12.4 1712.632 2 31.3
327 36.6 488.8193 8 38.1
328 4.1 56.47425 7 62.1
329 3.5 757.3377 3 36.7
330 15.9 1497.713 3 23.6
331 13.6 4197.349 0 19.2
332 32.0 1156.777 0 12.8
333 25.6 4519.69 0 15.6
334 39.8 617.7134 2 39.6
335 7.8 104.8101 5 38.4
336 30.0 1013.341 5 22.8
337 27.3 337.6016 6 36.5
338 5.1 1867.233 2 35.6
339 31.3 600.8604 5 30.9
340 31.5 258.186 9 36.3
341 1.7 329.9747 5 50.4
342 33.6 270.8895 0 42.9
343 13.0 750.0704 2 37.0
344 5.7 90.45606 9 53.5
345 33.5 563.2854 8 46.6
346 34.6 3085.17 0 41.2
347 0.0 185.4296 0 37.9
348 13.2 1712.632 2 30.8
349 17.4 6488.021 1 11.2
350 4.6 259.6607 6 53.7
351 7.8 104.8101 5 47.0
352 13.2 492.2313 5 42.3
353 4.0 2180.245 3 28.6
354 18.4 2674.961 3 25.7
355 4.1 2147.376 3 31.3
356 12.2 1360.139 1 30.1
357 3.8 383.8624 5 60.7
358 10.3 211.4473 1 45.3
359 0.0 338.9679 9 44.9
360 1.1 193.5845 6 45.1
361 5.6 2408.993 0 24.7
362 32.9 87.30221999999999 10 47.1
363 41.4 281.205 8 63.3
364 17.1 967.4 4 40.0
365 32.3 109.9455 10 48.0
366 35.3 614.1394 7 33.1
367 17.3 2261.4320000000002 4 29.5
368 14.2 1801.5439999999999 1 24.8
369 15.0 1828.319 2 20.9
370 18.2 350.8515 1 43.1
371 20.2 2185.1279999999997 3 22.8
372 15.9 289.3248 5 42.1
373 4.1 312.8963 5 51.7
374 33.9 157.6052 7 41.5
375 0.0 274.0144 1 52.2
376 5.4 390.5684 5 49.5
377 21.7 1157.988 0 23.8
378 14.7 1717.193 2 30.5
379 3.9 49.66105 8 56.8
380 37.3 587.8877 8 37.4
381 0.0 292.9978 6 69.7
382 14.1 289.3248 5 53.3
383 8.0 132.5469 9 47.3
384 16.3 3529.5640000000003 0 29.3
385 29.1 506.1144 4 40.3
386 16.1 4066.587 0 12.9
387 18.3 82.88643 10 46.6
388 0.0 185.4296 0 55.3
389 16.2 2103.555 3 25.6
390 10.4 2251.938 4 27.3
391 40.9 122.3619 8 67.7
392 32.8 377.8302 9 38.6
393 6.2 1939.749 1 31.3
394 42.7 443.80199999999996 6 35.3
395 16.9 967.4 4 40.3
396 32.6 4136.271 1 24.7
397 21.2 512.5487 4 42.5
398 37.1 918.6357 1 31.9
399 13.1 1164.838 4 32.2
400 14.7 1717.193 2 23.0
401 12.7 170.1289 1 37.3
402 26.8 482.7581 5 35.5
403 7.6 2175.03 3 27.7
404 12.7 187.4823 1 28.5
405 30.9 161.942 9 39.7
406 16.4 289.3248 5 41.2
407 23.0 130.9945 6 37.2
408 1.9 372.1386 7 40.5
409 5.2 2408.993 0 22.3
410 18.5 2175.744 3 28.1
411 13.7 4082.015 0 15.4
412 5.6 90.45606 9 50.0
413 18.8 390.9696 7 40.6
414 8.1 104.8101 5 52.5
415 6.5 90.45606 9 63.9

File diff suppressed because one or more lines are too long
Loading…
Cancel
Save