Merge files using strategies
continuous-integration/drone/push Build is passing
Details
continuous-integration/drone/push Build is passing
Details
parent
9da6e2d594
commit
01ef19a2f8
@ -0,0 +1,48 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
|
||||
|
||||
st.header("Clustering")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
general_row = st.columns([1, 1])
|
||||
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
|
||||
data_name = general_row[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||
|
||||
with st.form("cluster_form"):
|
||||
if isinstance(clustering, KMeansCluster):
|
||||
row1 = st.columns([1, 1, 1])
|
||||
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
|
||||
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
|
||||
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
|
||||
elif isinstance(clustering, DBSCANCluster):
|
||||
clustering.eps = st.slider("eps", min_value=0.0001, max_value=1.0, step=0.1, value=clustering.eps)
|
||||
clustering.min_samples = st.number_input("min_samples", min_value=1, value=clustering.min_samples)
|
||||
|
||||
st.form_submit_button("Launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
result = clustering.run(x)
|
||||
|
||||
st.table(result.statistics)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -1,32 +0,0 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import DBSCAN_cluster
|
||||
|
||||
st.header("Clustering: dbscan")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
dbscan = DBSCAN_cluster(eps,min_samples,x)
|
||||
y_dbscan = dbscan.run()
|
||||
st.table(dbscan.get_stats())
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -1,44 +0,0 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import KMeans_cluster
|
||||
|
||||
st.header("Clustering: kmeans")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
row1 = st.columns([1,1,1])
|
||||
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||
|
||||
row2 = st.columns([1,1])
|
||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||
|
||||
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
|
||||
y_kmeans = kmeans.run()
|
||||
|
||||
st.table(kmeans.get_stats())
|
||||
|
||||
centers = kmeans.centers
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
Loading…
Reference in new issue