prediction
Hugo PRADIER 10 months ago
parent 2d1c867bed
commit 089cc66042

@ -3,6 +3,7 @@ from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import pandas as pd
st.header("Prediction: Classification")
@ -53,7 +54,7 @@ if "data" in st.session_state:
value = st.number_input(f"Value for {feature}", value=0.0)
pred_values.append(value)
prediction = model.predict([pred_values])
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
if target_name in label_encoders:
prediction = label_encoders[target_name].inverse_transform(prediction)

@ -1,5 +1,6 @@
import streamlit as st
from sklearn.linear_model import LinearRegression
import pandas as pd
st.header("Prediction: Regression")
@ -21,7 +22,7 @@ if "data" in st.session_state:
st.subheader("Enter values for prediction")
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
prediction = model.predict([pred_values])
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
st.write("Prediction:", prediction[0])
else:

Loading…
Cancel
Save