|
|
|
@ -3,6 +3,7 @@ from sklearn.linear_model import LogisticRegression
|
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
|
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
st.header("Prediction: Classification")
|
|
|
|
|
|
|
|
|
@ -53,7 +54,7 @@ if "data" in st.session_state:
|
|
|
|
|
value = st.number_input(f"Value for {feature}", value=0.0)
|
|
|
|
|
pred_values.append(value)
|
|
|
|
|
|
|
|
|
|
prediction = model.predict([pred_values])
|
|
|
|
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
|
|
|
|
|
|
|
|
|
if target_name in label_encoders:
|
|
|
|
|
prediction = label_encoders[target_name].inverse_transform(prediction)
|
|
|
|
|