add confusion_matrix
continuous-integration/drone/push Build is passing Details

pull/14/head
Bastien OLLIER 10 months ago
parent 4054395641
commit 27e69b2af8

@ -1,11 +1,11 @@
import streamlit as st
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import accuracy_score,confusion_matrix
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
st.header("Prediction: Classification")
@ -63,24 +63,20 @@ if "data" in st.session_state:
st.write("Prediction:", prediction[0])
if len(data_name) == 1:
fig = plt.figure()
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
print([x[0] for x in X.values.tolist()])
cm = confusion_matrix(y, y_pred)
sns.heatmap(cm, annot=True, fmt="d")
fig = plt.figure()
dataframe_sorted = pd.concat([X, y], axis=1).sort_values(by=data_name)
X = dataframe_sorted[data_name[0]]
y = dataframe_sorted[target_name]
prediction_array_y = [
model.predict(pd.DataFrame([[dataframe_sorted[data_name[0]].iloc[i]]], columns=data_name))[0]
for i in range(dataframe_sorted.shape[0])
]
plt.xlabel('Predicted')
plt.ylabel('True')
plt.scatter(dataframe_sorted[data_name[0]], dataframe_sorted[target_name], color='b')
plt.scatter(dataframe_sorted[data_name[0]], prediction_array_y, color='r')
st.pyplot(fig)
st.pyplot(fig)
else:

@ -2,7 +2,6 @@ import streamlit as st
from sklearn.linear_model import LinearRegression
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
st.header("Prediction: Regression")
@ -31,6 +30,7 @@ if "data" in st.session_state:
fig = plt.figure()
dataframe_sorted = pd.concat([X, y], axis=1).sort_values(by=data_name)
if len(data_name) == 1:
X = dataframe_sorted[data_name[0]]
y = dataframe_sorted[target_name]

Loading…
Cancel
Save