Implement base MissingValues strategies

feature/missing-values
Clément FRÉVILLE 11 months ago
parent ba1aef5727
commit 63bce82b3b

1
.gitignore vendored

@ -0,0 +1 @@
__pycache__

@ -13,6 +13,7 @@ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
if uploaded_file is not None: if uploaded_file is not None:
st.session_state.data = pd.read_csv(uploaded_file) st.session_state.data = pd.read_csv(uploaded_file)
st.session_state.working_data = st.session_state.data
st.success("File loaded successfully!") st.success("File loaded successfully!")

@ -0,0 +1,70 @@
from abc import ABC, abstractmethod
from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype
from typing import Any, Union
class MVStrategy(ABC):
"""A way to handle missing values in a dataframe."""
@abstractmethod
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
"""Apply the current strategy to the given series.
The series is described by its label and dataframe."""
return df
@staticmethod
def list_available(series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy()))
return choices
class DropStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df.dropna(subset=label, inplace=True)
return df
def __str__(self) -> str:
return "Drop"
class PositionStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
series.fillna(self.get_value(series), inplace=True)
return df
@abstractmethod
def get_value(self, series: Series) -> Any:
pass
class MeanStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.mean()
def __str__(self) -> str:
return "Use mean"
class MedianStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.median()
def __str__(self) -> str:
return "Use median"
class ModeStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Any:
return series.mode()[0]
def __str__(self) -> str:
return "Use mode"

@ -0,0 +1,23 @@
import streamlit as st
from mvstrategy import MVStrategy
if "data" in st.session_state:
data = st.session_state.data
st.session_state.data = data.copy()
for column, series in data.items():
missing_count = series.isna().sum()
choices = MVStrategy.list_available(series)
option = st.selectbox(
f"Missing values of {column} ({missing_count})",
choices,
index=1,
key=f"mv-{column}",
)
# Always re-get the series to avoid reusing an invalidated series pointer
data = option.apply(data, column, data[column])
st.write(data)
st.session_state.working_data = data
else:
st.error("file not loaded")

@ -5,8 +5,8 @@ import seaborn as sns
st.header("Data Visualization") st.header("Data Visualization")
if "data" in st.session_state: if "working_data" in st.session_state:
data = st.session_state.data data = st.session_state.working_data
st.subheader("Histogram") st.subheader("Histogram")
column_to_plot = st.selectbox("Select Column for Histogram", data.columns) column_to_plot = st.selectbox("Select Column for Histogram", data.columns)

Loading…
Cancel
Save