prediction de regression terminee

Hugo PRADIER 10 months ago
parent 5ae8b7d071
commit 75d2de0889

@ -1,56 +0,0 @@
import streamlit as st
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn import datasets
from sklearn.impute import SimpleImputer # Add this line
import pandas as pd
import numpy as np
st.header("Prediction")
if "data" in st.session_state:
data = st.session_state.data
with st.form("my_form"):
header = st.columns([2,1,2])
header[0].subheader("Model")
header[1].subheader("Data Name")
row1 = st.columns([2,1,2])
model = row1[0].selectbox("", ["Random Forest Classifier", "Random Forest Regressor", "Logistic Regression", "Linear Regression"])
data_name = row1[1].selectbox("", data.columns)
st.form_submit_button('launch')
if model == "Random Forest Classifier":
model = RandomForestClassifier()
elif model == "Random Forest Regressor":
model = RandomForestRegressor()
elif model == "Logistic Regression":
model = LogisticRegression()
elif model == "Linear Regression":
model = LinearRegression()
x = data.drop(data_name, axis=1)
y = data[data_name]
# Convert categorical data to numerical values
x = pd.get_dummies(x)
# Handle missing values
imputer = SimpleImputer()
x = imputer.fit_transform(x)
x = pd.get_dummies(x)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
if model == "Random Forest Classifier":
st.write("Accuracy: ", accuracy_score(y_test, y_pred))
elif model == "Random Forest Regressor" or model == "Logistic Regression" or model == "Linear Regression":
st.write("Mean Squared Error: ", np.mean((y_pred - y_test) ** 2))
else:
st.error("file not loaded")

@ -0,0 +1,41 @@
import streamlit as st
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
import pandas as pd
st.header("Prediction: Classification")
if "data" in st.session_state:
data = st.session_state.data
with st.form("classification_form"):
st.subheader("Random Forest Parameters")
data_name = st.multiselect("Features", data.select_dtypes(include="object").columns, help="Sélectionnez les caractéristiques pour l'entraînement.")
target_name = st.selectbox("Target", data.columns, help="Sélectionnez la variable cible pour l'entraînement.")
n_estimators = st.number_input("Number of estimators", step=1, min_value=1, value=100, help="Nombre d'arbres dans la forêt.")
max_depth = st.number_input("Max depth", step=1, min_value=1, value=10, help="Profondeur maximale des arbres.")
submit_button = st.form_submit_button('Train and Predict')
if submit_button and data_name and target_name:
le = LabelEncoder()
X = data[data_name].apply(le.fit_transform)
y = le.fit_transform(data[target_name])
model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=111)
model.fit(X, y)
st.subheader("Enter values for prediction")
pred_values = [st.selectbox(f"Value for {feature}", options=data[feature].unique(), key=f"value_{feature}") for feature in data_name]
pred_values_encoded = [le.transform([val])[0] for val in pred_values]
prediction = model.predict([pred_values_encoded])
prediction_decoded = le.inverse_transform(prediction)
st.write("Prediction:", prediction_decoded[0])
else:
st.error("File not loaded")

@ -0,0 +1,28 @@
import streamlit as st
from sklearn.linear_model import LinearRegression
st.header("Prediction: Regression")
if "data" in st.session_state:
data = st.session_state.data
with st.form("regression_form"):
st.subheader("Linear Regression Parameters")
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
model = LinearRegression()
model.fit(X, y)
st.subheader("Enter values for prediction")
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
prediction = model.predict([pred_values])
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")
Loading…
Cancel
Save