fin separation front/back
continuous-integration/drone/push Build is failing Details

separation
Hugo PRADIER 10 months ago
parent 15e1674cb2
commit 7dafa78bc4

2
.gitignore vendored

@ -1,2 +1,2 @@
__pycache__ __pycache__
.venv */myenv

@ -0,0 +1,45 @@
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
def perform_classification(data, data_name, target_name, test_size):
X = data[data_name]
y = data[target_name]
label_encoders = {}
for column in X.select_dtypes(include=['object']).columns:
le = LabelEncoder()
X[column] = le.fit_transform(X[column])
label_encoders[column] = le
if y.dtype == 'object':
le = LabelEncoder()
y = le.fit_transform(y)
label_encoders[target_name] = le
else:
if y.nunique() > 10:
raise ValueError("The target variable seems to be continuous. Please select a categorical target for classification.")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return model, label_encoders, accuracy
def make_prediction(model, label_encoders, data_name, target_name, input_values):
X_new = []
for feature, value in zip(data_name, input_values):
if feature in label_encoders:
value = label_encoders[feature].transform([value])[0]
X_new.append(value)
prediction = model.predict([X_new])
if target_name in label_encoders:
prediction = label_encoders[target_name].inverse_transform(prediction)
return prediction[0]

@ -0,0 +1,17 @@
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
def perform_dbscan_clustering(data, data_name, eps, min_samples):
x = data[data_name].to_numpy()
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
y_dbscan = dbscan.fit_predict(x)
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_dbscan, s=50, cmap="viridis")
return fig

@ -0,0 +1,21 @@
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
def perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter):
x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
y_kmeans = kmeans.fit_predict(x)
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
return fig

@ -0,0 +1,18 @@
from sklearn.linear_model import LinearRegression
def perform_regression(data, data_name, target_name):
X = data[data_name]
y = data[target_name]
if not isinstance(y.iloc[0], (int, float)):
raise ValueError("The target variable should be numeric (continuous) for regression.")
model = LinearRegression()
model.fit(X, y)
return model
def make_prediction(model, feature_names, input_values):
prediction = model.predict([input_values])
return prediction[0]

@ -0,0 +1,16 @@
import matplotlib.pyplot as plt
import seaborn as sns
def plot_histogram(data, column):
fig, ax = plt.subplots()
ax.hist(data[column].dropna(), bins=20, edgecolor='k')
ax.set_title(f"Histogram of {column}")
ax.set_xlabel(column)
ax.set_ylabel("Frequency")
return fig
def plot_boxplot(data, column):
fig, ax = plt.subplots()
sns.boxplot(data=data, x=column, ax=ax)
ax.set_title(f"Boxplot of {column}")
return fig

@ -1,35 +1,22 @@
import streamlit as st import streamlit as st
import matplotlib.pyplot as plt import sys
from sklearn.cluster import DBSCAN import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
st.header("Clustering: dbscan") from dbscan_strategy import perform_dbscan_clustering
st.header("Clustering: DBSCAN")
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.data data = st.session_state.data
with st.form("my_form"): with st.form("dbscan_form"):
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3) data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01) eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5) min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
st.form_submit_button("launch") submitted = st.form_submit_button("Launch")
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
y_dbscan = dbscan.fit_predict(x)
fig = plt.figure() if submitted and 2 <= len(data_name) <= 3:
if len(data_name) == 2: fig = perform_dbscan_clustering(data, data_name, eps, min_samples)
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
st.pyplot(fig) st.pyplot(fig)
else: else:
st.error("file not loaded") st.error("File not loaded")

@ -1,44 +1,26 @@
import streamlit as st import streamlit as st
from sklearn.cluster import KMeans import sys
import matplotlib.pyplot as plt import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
st.header("Clustering: kmeans") from kmeans_strategy import perform_kmeans_clustering
st.header("Clustering: KMeans")
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.data data = st.session_state.data
with st.form("my_form"): with st.form("kmeans_form"):
row1 = st.columns([1,1,1]) row1 = st.columns([1, 1, 1])
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0])) n_clusters = row1[0].selectbox("Number of clusters", range(1, data.shape[0]))
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3) data_name = row1[1].multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
n_init = row1[2].number_input("n_init",step=1,min_value=1) n_init = row1[2].number_input("n_init", step=1, min_value=1)
row2 = st.columns([1,1])
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
st.form_submit_button("launch")
if len(data_name) >= 2 and len(data_name) <=3: row2 = st.columns([1, 1])
x = data[data_name].to_numpy() max_iter = row2[0].number_input("max_iter", step=1, min_value=1)
submitted = st.form_submit_button("Launch")
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111) if submitted and 2 <= len(data_name) <= 3:
y_kmeans = kmeans.fit_predict(x) fig = perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter)
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig) st.pyplot(fig)
else: else:
st.error("file not loaded") st.error("File not loaded")

@ -2,7 +2,7 @@ import streamlit as st
import sys import sys
import os import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend'))) sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy from norm_strategy import MVStrategy, ScalingStrategy, KNNStrategy
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.original_data data = st.session_state.original_data

@ -1,9 +1,8 @@
import streamlit as st import streamlit as st
from sklearn.linear_model import LogisticRegression import sys
from sklearn.model_selection import train_test_split import os
from sklearn.metrics import accuracy_score sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
from sklearn.preprocessing import LabelEncoder from classification_strategy import perform_classification, make_prediction
import pandas as pd
st.header("Prediction: Classification") st.header("Prediction: Classification")
@ -12,53 +11,38 @@ if "data" in st.session_state:
with st.form("classification_form"): with st.form("classification_form"):
st.subheader("Classification Parameters") st.subheader("Classification Parameters")
data_name = st.multiselect("Features", data.columns) data_name = st.multiselect("Features", data.columns, key="classification_features")
target_name = st.selectbox("Target", data.columns) target_name = st.selectbox("Target", data.columns, key="classification_target")
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1) test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1, key="classification_test_size")
st.form_submit_button('Train and Predict') submitted = st.form_submit_button('Train and Predict')
if data_name and target_name: if submitted and data_name and target_name:
X = data[data_name] try:
y = data[target_name] model, label_encoders, accuracy = perform_classification(data, data_name, target_name, test_size)
st.session_state.classification_model = model
label_encoders = {} st.session_state.classification_label_encoders = label_encoders
for column in X.select_dtypes(include=['object']).columns: st.session_state.classification_accuracy = accuracy
le = LabelEncoder() st.session_state.classification_features_selected = data_name
X[column] = le.fit_transform(X[column]) st.session_state.classification_target_selected = target_name
label_encoders[column] = le except ValueError as e:
st.error(e)
if y.dtype == 'object':
le = LabelEncoder() if "classification_model" in st.session_state:
y = le.fit_transform(y)
label_encoders[target_name] = le
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
st.subheader("Model Accuracy") st.subheader("Model Accuracy")
st.write(f"Accuracy on test data: {accuracy:.2f}") st.write(f"Accuracy on test data: {st.session_state.classification_accuracy:.2f}")
st.subheader("Enter values for prediction") st.subheader("Enter values for prediction")
pred_values = [] input_values = []
for feature in data_name: for feature in st.session_state.classification_features_selected:
if feature in label_encoders: if feature in st.session_state.classification_label_encoders:
values = list(label_encoders[feature].classes_) values = list(st.session_state.classification_label_encoders[feature].classes_)
value = st.selectbox(f"Value for {feature}", values) value = st.selectbox(f"Value for {feature}", values, key=f"classification_input_{feature}")
value_encoded = label_encoders[feature].transform([value])[0]
pred_values.append(value_encoded)
else: else:
value = st.number_input(f"Value for {feature}", value=0.0) value = st.number_input(f"Value for {feature}", value=0.0, key=f"classification_input_{feature}")
pred_values.append(value) input_values.append(value)
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
if target_name in label_encoders: prediction = make_prediction(st.session_state.classification_model, st.session_state.classification_label_encoders, st.session_state.classification_features_selected, st.session_state.classification_target_selected, input_values)
prediction = label_encoders[target_name].inverse_transform(prediction)
st.write("Prediction:", prediction[0]) st.write("Prediction:", prediction)
else: else:
st.error("File not loaded") st.error("File not loaded")

@ -1,6 +1,8 @@
import streamlit as st import streamlit as st
from sklearn.linear_model import LinearRegression import sys
import pandas as pd import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
from regression_strategy import perform_regression, make_prediction
st.header("Prediction: Regression") st.header("Prediction: Regression")
@ -9,21 +11,24 @@ if "data" in st.session_state:
with st.form("regression_form"): with st.form("regression_form"):
st.subheader("Linear Regression Parameters") st.subheader("Linear Regression Parameters")
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns) data_name = st.multiselect("Features", data.select_dtypes(include="number").columns, key="regression_features")
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns) target_name = st.selectbox("Target", data.select_dtypes(include="number").columns, key="regression_target")
st.form_submit_button('Train and Predict') submitted = st.form_submit_button('Train and Predict')
if data_name and target_name: if submitted and data_name and target_name:
X = data[data_name] try:
y = data[target_name] model = perform_regression(data, data_name, target_name)
st.session_state.regression_model = model
model = LinearRegression() st.session_state.regression_features_selected = data_name
model.fit(X, y) st.session_state.regression_target_selected = target_name
except ValueError as e:
st.error(e)
if "regression_model" in st.session_state:
st.subheader("Enter values for prediction") st.subheader("Enter values for prediction")
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name] input_values = [st.number_input(f"Value for {feature}", value=0.0, key=f"regression_input_{feature}") for feature in st.session_state.regression_features_selected]
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name)) prediction = make_prediction(st.session_state.regression_model, st.session_state.regression_features_selected, input_values)
st.write("Prediction:", prediction[0]) st.write("Prediction:", prediction)
else: else:
st.error("File not loaded") st.error("File not loaded")

@ -1,30 +1,25 @@
import streamlit as st import streamlit as st
import matplotlib.pyplot as plt import sys
import seaborn as sns import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
from visualization_strategy import plot_histogram, plot_boxplot
st.header("Data Visualization") st.header("Data Visualization")
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.data data = st.session_state.data
st.subheader("Histogram") st.subheader("Histogram")
column_to_plot = st.selectbox("Select Column for Histogram", data.columns) column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
if column_to_plot: if column_to_plot:
fig, ax = plt.subplots() fig = plot_histogram(data, column_to_plot)
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
ax.set_title(f"Histogram of {column_to_plot}")
ax.set_xlabel(column_to_plot)
ax.set_ylabel("Frequency")
st.pyplot(fig) st.pyplot(fig)
st.subheader("Boxplot") st.subheader("Boxplot")
dataNumeric = data.select_dtypes(include="number") dataNumeric = data.select_dtypes(include="number")
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns) column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
if column_to_plot: if column_to_plot:
fig, ax = plt.subplots() fig = plot_boxplot(data, column_to_plot)
sns.boxplot(data=data, x=column_to_plot, ax=ax)
ax.set_title(f"Boxplot of {column_to_plot}")
st.pyplot(fig) st.pyplot(fig)
else: else:
st.error("file not loaded") st.error("file not loaded")
Loading…
Cancel
Save