Add cluster stats (#13)
continuous-integration/drone/push Build is passing Details

Co-authored-by: bastien ollier <bastien.ollier@etu.uca.fr>
Reviewed-on: #13
Reviewed-by: Hugo PRADIER <hugo.pradier2@etu.uca.fr>
Reviewed-by: Clément FRÉVILLE <clement.freville2@etu.uca.fr>
Co-authored-by: Bastien OLLIER <bastien.ollier@noreply.codefirst.iut.uca.fr>
Co-committed-by: Bastien OLLIER <bastien.ollier@noreply.codefirst.iut.uca.fr>
pull/15/head
Bastien OLLIER 10 months ago committed by Clément FRÉVILLE
parent 4d82767c68
commit 9da6e2d594

@ -0,0 +1,63 @@
from sklearn.cluster import DBSCAN, KMeans
import numpy as np
class DBSCAN_cluster():
def __init__(self, eps, min_samples,data):
self.eps = eps
self.min_samples = min_samples
self.data = data
self.labels = np.array([])
def run(self):
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
self.labels = dbscan.fit_predict(self.data)
return self.labels
def get_stats(self):
unique_labels = np.unique(self.labels)
stats = []
for label in unique_labels:
if label == -1:
continue
cluster_points = self.data[self.labels == label]
num_points = len(cluster_points)
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
stats.append({
"cluster": label,
"num_points": num_points,
"density": density
})
return stats
class KMeans_cluster():
def __init__(self, n_clusters, n_init, max_iter, data):
self.n_clusters = n_clusters
self.n_init = n_init
self.max_iter = max_iter
self.data = data
self.labels = np.array([])
self.centers = []
def run(self):
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
self.labels = kmeans.fit_predict(self.data)
self.centers = kmeans.cluster_centers_
return self.labels
def get_stats(self):
unique_labels = np.unique(self.labels)
stats = []
for label in unique_labels:
cluster_points = self.data[self.labels == label]
num_points = len(cluster_points)
center = self.centers[label]
stats.append({
'cluster': label,
'num_points': num_points,
'center': center
})
return stats

@ -1,10 +1,9 @@
import streamlit as st import streamlit as st
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN from clusters import DBSCAN_cluster
st.header("Clustering: dbscan") st.header("Clustering: dbscan")
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.data data = st.session_state.data
@ -17,8 +16,9 @@ if "data" in st.session_state:
if len(data_name) >= 2 and len(data_name) <=3: if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy() x = data[data_name].to_numpy()
dbscan = DBSCAN(eps=eps, min_samples=min_samples) dbscan = DBSCAN_cluster(eps,min_samples,x)
y_dbscan = dbscan.fit_predict(x) y_dbscan = dbscan.run()
st.table(dbscan.get_stats())
fig = plt.figure() fig = plt.figure()
if len(data_name) == 2: if len(data_name) == 2:
@ -28,8 +28,5 @@ if "data" in st.session_state:
ax = fig.add_subplot(projection='3d') ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis") ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
st.pyplot(fig) st.pyplot(fig)
else: else:
st.error("file not loaded") st.error("file not loaded")

@ -1,10 +1,9 @@
import streamlit as st import streamlit as st
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from clusters import KMeans_cluster
st.header("Clustering: kmeans") st.header("Clustering: kmeans")
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.data data = st.session_state.data
@ -23,21 +22,22 @@ if "data" in st.session_state:
if len(data_name) >= 2 and len(data_name) <=3: if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy() x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111) kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
y_kmeans = kmeans.fit_predict(x) y_kmeans = kmeans.run()
st.table(kmeans.get_stats())
centers = kmeans.centers
fig = plt.figure() fig = plt.figure()
if len(data_name) == 2: if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear') ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis") plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X") plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
else: else:
ax = fig.add_subplot(projection='3d') ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis") ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_ ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig) st.pyplot(fig)
else: else:

Loading…
Cancel
Save