Co-authored-by: bastien ollier <bastien.ollier@etu.uca.fr> Reviewed-on: #13 Reviewed-by: Hugo PRADIER <hugo.pradier2@etu.uca.fr> Reviewed-by: Clément FRÉVILLE <clement.freville2@etu.uca.fr> Co-authored-by: Bastien OLLIER <bastien.ollier@noreply.codefirst.iut.uca.fr> Co-committed-by: Bastien OLLIER <bastien.ollier@noreply.codefirst.iut.uca.fr>pull/15/head
parent
4d82767c68
commit
9da6e2d594
@ -0,0 +1,63 @@
|
|||||||
|
from sklearn.cluster import DBSCAN, KMeans
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class DBSCAN_cluster():
|
||||||
|
def __init__(self, eps, min_samples,data):
|
||||||
|
self.eps = eps
|
||||||
|
self.min_samples = min_samples
|
||||||
|
self.data = data
|
||||||
|
self.labels = np.array([])
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
||||||
|
self.labels = dbscan.fit_predict(self.data)
|
||||||
|
return self.labels
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
unique_labels = np.unique(self.labels)
|
||||||
|
stats = []
|
||||||
|
for label in unique_labels:
|
||||||
|
if label == -1:
|
||||||
|
continue
|
||||||
|
cluster_points = self.data[self.labels == label]
|
||||||
|
num_points = len(cluster_points)
|
||||||
|
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
||||||
|
stats.append({
|
||||||
|
"cluster": label,
|
||||||
|
"num_points": num_points,
|
||||||
|
"density": density
|
||||||
|
})
|
||||||
|
|
||||||
|
return stats
|
||||||
|
|
||||||
|
|
||||||
|
class KMeans_cluster():
|
||||||
|
def __init__(self, n_clusters, n_init, max_iter, data):
|
||||||
|
self.n_clusters = n_clusters
|
||||||
|
self.n_init = n_init
|
||||||
|
self.max_iter = max_iter
|
||||||
|
self.data = data
|
||||||
|
self.labels = np.array([])
|
||||||
|
self.centers = []
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
||||||
|
self.labels = kmeans.fit_predict(self.data)
|
||||||
|
self.centers = kmeans.cluster_centers_
|
||||||
|
return self.labels
|
||||||
|
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
unique_labels = np.unique(self.labels)
|
||||||
|
stats = []
|
||||||
|
|
||||||
|
for label in unique_labels:
|
||||||
|
cluster_points = self.data[self.labels == label]
|
||||||
|
num_points = len(cluster_points)
|
||||||
|
center = self.centers[label]
|
||||||
|
stats.append({
|
||||||
|
'cluster': label,
|
||||||
|
'num_points': num_points,
|
||||||
|
'center': center
|
||||||
|
})
|
||||||
|
return stats
|
Loading…
Reference in new issue