Compare commits
3 Commits
main
...
separation
Author | SHA1 | Date |
---|---|---|
|
cc17a9323d | 10 months ago |
|
7dafa78bc4 | 10 months ago |
|
15e1674cb2 | 10 months ago |
@ -1,2 +1,2 @@
|
||||
__pycache__
|
||||
.venv
|
||||
*/myenv
|
||||
|
@ -0,0 +1,45 @@
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
|
||||
def perform_classification(data, data_name, target_name, test_size):
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
label_encoders = {}
|
||||
for column in X.select_dtypes(include=['object']).columns:
|
||||
le = LabelEncoder()
|
||||
X[column] = le.fit_transform(X[column])
|
||||
label_encoders[column] = le
|
||||
|
||||
if y.dtype == 'object':
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
label_encoders[target_name] = le
|
||||
else:
|
||||
if y.nunique() > 10:
|
||||
raise ValueError("The target variable seems to be continuous. Please select a categorical target for classification.")
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||
|
||||
model = LogisticRegression()
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
|
||||
return model, label_encoders, accuracy
|
||||
|
||||
def make_prediction(model, label_encoders, data_name, target_name, input_values):
|
||||
X_new = []
|
||||
for feature, value in zip(data_name, input_values):
|
||||
if feature in label_encoders:
|
||||
value = label_encoders[feature].transform([value])[0]
|
||||
X_new.append(value)
|
||||
|
||||
prediction = model.predict([X_new])
|
||||
|
||||
if target_name in label_encoders:
|
||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||
|
||||
return prediction[0]
|
@ -0,0 +1,16 @@
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
def perform_dbscan_clustering(data, data_name, eps, min_samples):
|
||||
x = data[data_name].to_numpy()
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
y_dbscan = dbscan.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
return fig
|
@ -0,0 +1,20 @@
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import KMeans
|
||||
|
||||
def perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter):
|
||||
x = data[data_name].to_numpy()
|
||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
||||
return fig
|
@ -0,0 +1,18 @@
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
def perform_regression(data, data_name, target_name):
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
if not isinstance(y.iloc[0], (int, float)):
|
||||
raise ValueError("The target variable should be numeric (continuous) for regression.")
|
||||
|
||||
model = LinearRegression()
|
||||
model.fit(X, y)
|
||||
|
||||
return model
|
||||
|
||||
def make_prediction(model, feature_names, input_values):
|
||||
prediction = model.predict([input_values])
|
||||
|
||||
return prediction[0]
|
@ -0,0 +1,16 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
def plot_histogram(data, column):
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f"Histogram of {column}")
|
||||
ax.set_xlabel(column)
|
||||
ax.set_ylabel("Frequency")
|
||||
return fig
|
||||
|
||||
def plot_boxplot(data, column):
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column, ax=ax)
|
||||
ax.set_title(f"Boxplot of {column}")
|
||||
return fig
|
@ -1,83 +0,0 @@
|
||||
from sklearn.cluster import DBSCAN, KMeans
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
|
||||
@dataclass
|
||||
class ClusterResult:
|
||||
labels: np.array
|
||||
centers: Optional[np.array]
|
||||
statistics: list[dict[str, Any]]
|
||||
|
||||
|
||||
class Cluster(ABC):
|
||||
@abstractmethod
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
pass
|
||||
|
||||
|
||||
class DBSCANCluster(Cluster):
|
||||
def __init__(self, eps: float = 0.5, min_samples: int = 5):
|
||||
self.eps = eps
|
||||
self.min_samples = min_samples
|
||||
|
||||
#@typing.override
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
||||
labels = dbscan.fit_predict(data)
|
||||
return ClusterResult(labels, None, self.get_statistics(data, labels))
|
||||
|
||||
def get_statistics(self, data: np.array, labels: np.array) -> list[dict[str, Any]]:
|
||||
unique_labels = np.unique(labels)
|
||||
stats = []
|
||||
for label in unique_labels:
|
||||
if label == -1:
|
||||
continue
|
||||
cluster_points = data[labels == label]
|
||||
num_points = len(cluster_points)
|
||||
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
||||
stats.append({
|
||||
"cluster": label,
|
||||
"num_points": num_points,
|
||||
"density": density
|
||||
})
|
||||
return stats
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "DBScan"
|
||||
|
||||
|
||||
class KMeansCluster(Cluster):
|
||||
def __init__(self, n_clusters: int = 8, n_init: int = 1, max_iter: int = 300):
|
||||
self.n_clusters = n_clusters
|
||||
self.n_init = n_init
|
||||
self.max_iter = max_iter
|
||||
|
||||
#@typing.override
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
||||
labels = kmeans.fit_predict(data)
|
||||
centers = kmeans.cluster_centers_
|
||||
return ClusterResult(labels, centers, self.get_statistics(data, labels, centers))
|
||||
|
||||
def get_statistics(self, data: np.array, labels: np.array, centers: np.array) -> list[dict[str, Any]]:
|
||||
unique_labels = np.unique(labels)
|
||||
stats = []
|
||||
|
||||
for label in unique_labels:
|
||||
cluster_points = data[labels == label]
|
||||
num_points = len(cluster_points)
|
||||
center = centers[label]
|
||||
stats.append({
|
||||
"cluster": label,
|
||||
"num_points": num_points,
|
||||
"center": center,
|
||||
})
|
||||
return stats
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "KMeans"
|
||||
|
||||
|
||||
CLUSTERING_STRATEGIES = [DBSCANCluster(), KMeansCluster()]
|
@ -1,86 +0,0 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.metrics import silhouette_score
|
||||
import numpy as np
|
||||
|
||||
st.header("Clustering")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
general_row = st.columns([1, 1, 1])
|
||||
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
|
||||
data_name = general_row[1].multiselect("Columns", data.select_dtypes(include="number").columns)
|
||||
n_components = general_row[2].number_input("Reduce dimensions to (PCA)", min_value=1, max_value=3, value=2)
|
||||
|
||||
with st.form("cluster_form"):
|
||||
if isinstance(clustering, KMeansCluster):
|
||||
row1 = st.columns([1, 1, 1])
|
||||
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
|
||||
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
|
||||
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
|
||||
elif isinstance(clustering, DBSCANCluster):
|
||||
row1 = st.columns([1, 1])
|
||||
clustering.eps = row1[0].slider("eps", min_value=0.0001, max_value=1.0, step=0.05, value=clustering.eps)
|
||||
clustering.min_samples = row1[1].number_input("min_samples", min_value=1, value=clustering.min_samples)
|
||||
|
||||
st.form_submit_button("Launch")
|
||||
|
||||
if len(data_name) > 0:
|
||||
x = data[data_name].to_numpy()
|
||||
n_components = min(n_components, len(data_name))
|
||||
if len(data_name) > n_components:
|
||||
pca = PCA(n_components)
|
||||
x = pca.fit_transform(x)
|
||||
if n_components == 2:
|
||||
(fig, ax) = plt.subplots(figsize=(8, 8))
|
||||
for i in range(0, pca.components_.shape[1]):
|
||||
ax.arrow(
|
||||
0,
|
||||
0,
|
||||
pca.components_[0, i],
|
||||
pca.components_[1, i],
|
||||
head_width=0.1,
|
||||
head_length=0.1
|
||||
)
|
||||
|
||||
plt.text(
|
||||
pca.components_[0, i] + 0.05,
|
||||
pca.components_[1, i] + 0.05,
|
||||
data_name[i]
|
||||
)
|
||||
circle = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
|
||||
ax.add_patch(circle)
|
||||
plt.axis("equal")
|
||||
ax.set_title("PCA result - Correlation circle")
|
||||
st.pyplot(fig)
|
||||
|
||||
result = clustering.run(x)
|
||||
st.write("## Cluster stats")
|
||||
st.table(result.statistics)
|
||||
|
||||
st.write("## Graphical representation")
|
||||
fig = plt.figure()
|
||||
if n_components == 1:
|
||||
plt.scatter(x, np.zeros_like(x))
|
||||
elif n_components == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
if not (result.labels == 0).all():
|
||||
st.write("Silhouette score:", silhouette_score(x, result.labels))
|
||||
else:
|
||||
st.error("Select at least one column")
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -0,0 +1,22 @@
|
||||
import streamlit as st
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
||||
from dbscan_strategy import perform_dbscan_clustering
|
||||
|
||||
st.header("Clustering: DBSCAN")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("dbscan_form"):
|
||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||
submitted = st.form_submit_button("Launch")
|
||||
|
||||
if submitted and 2 <= len(data_name) <= 3:
|
||||
fig = perform_dbscan_clustering(data, data_name, eps, min_samples)
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("File not loaded")
|
@ -0,0 +1,26 @@
|
||||
import streamlit as st
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
||||
from kmeans_strategy import perform_kmeans_clustering
|
||||
|
||||
st.header("Clustering: KMeans")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("kmeans_form"):
|
||||
row1 = st.columns([1, 1, 1])
|
||||
n_clusters = row1[0].selectbox("Number of clusters", range(1, data.shape[0]))
|
||||
data_name = row1[1].multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
n_init = row1[2].number_input("n_init", step=1, min_value=1)
|
||||
|
||||
row2 = st.columns([1, 1])
|
||||
max_iter = row2[0].number_input("max_iter", step=1, min_value=1)
|
||||
submitted = st.form_submit_button("Launch")
|
||||
|
||||
if submitted and 2 <= len(data_name) <= 3:
|
||||
fig = perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter)
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("File not loaded")
|
@ -1,30 +1,25 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
||||
from visualization_strategy import plot_histogram, plot_boxplot
|
||||
|
||||
st.header("Data Visualization")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
st.subheader("Histogram")
|
||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f"Histogram of {column_to_plot}")
|
||||
ax.set_xlabel(column_to_plot)
|
||||
ax.set_ylabel("Frequency")
|
||||
fig = plot_histogram(data, column_to_plot)
|
||||
st.pyplot(fig)
|
||||
|
||||
st.subheader("Boxplot")
|
||||
dataNumeric = data.select_dtypes(include="number")
|
||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||
ax.set_title(f"Boxplot of {column_to_plot}")
|
||||
fig = plot_boxplot(data, column_to_plot)
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("file not loaded")
|
Loading…
Reference in new issue