Compare commits
11 Commits
separation
...
main
Author | SHA1 | Date |
---|---|---|
![]() |
f464f6166a | 10 months ago |
|
3038bd9841 | 10 months ago |
|
7cb0d55969 | 10 months ago |
|
01ef19a2f8 | 10 months ago |
|
86bd285193 | 10 months ago |
|
9bc9e21e45 | 10 months ago |
|
da1e97f07f | 10 months ago |
|
27e69b2af8 | 10 months ago |
![]() |
4054395641 | 10 months ago |
![]() |
01168f3588 | 10 months ago |
|
9da6e2d594 | 10 months ago |
@ -0,0 +1,83 @@
|
||||
from sklearn.cluster import DBSCAN, KMeans
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
|
||||
@dataclass
|
||||
class ClusterResult:
|
||||
labels: np.array
|
||||
centers: Optional[np.array]
|
||||
statistics: list[dict[str, Any]]
|
||||
|
||||
|
||||
class Cluster(ABC):
|
||||
@abstractmethod
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
pass
|
||||
|
||||
|
||||
class DBSCANCluster(Cluster):
|
||||
def __init__(self, eps: float = 0.5, min_samples: int = 5):
|
||||
self.eps = eps
|
||||
self.min_samples = min_samples
|
||||
|
||||
#@typing.override
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
||||
labels = dbscan.fit_predict(data)
|
||||
return ClusterResult(labels, None, self.get_statistics(data, labels))
|
||||
|
||||
def get_statistics(self, data: np.array, labels: np.array) -> list[dict[str, Any]]:
|
||||
unique_labels = np.unique(labels)
|
||||
stats = []
|
||||
for label in unique_labels:
|
||||
if label == -1:
|
||||
continue
|
||||
cluster_points = data[labels == label]
|
||||
num_points = len(cluster_points)
|
||||
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
||||
stats.append({
|
||||
"cluster": label,
|
||||
"num_points": num_points,
|
||||
"density": density
|
||||
})
|
||||
return stats
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "DBScan"
|
||||
|
||||
|
||||
class KMeansCluster(Cluster):
|
||||
def __init__(self, n_clusters: int = 8, n_init: int = 1, max_iter: int = 300):
|
||||
self.n_clusters = n_clusters
|
||||
self.n_init = n_init
|
||||
self.max_iter = max_iter
|
||||
|
||||
#@typing.override
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
||||
labels = kmeans.fit_predict(data)
|
||||
centers = kmeans.cluster_centers_
|
||||
return ClusterResult(labels, centers, self.get_statistics(data, labels, centers))
|
||||
|
||||
def get_statistics(self, data: np.array, labels: np.array, centers: np.array) -> list[dict[str, Any]]:
|
||||
unique_labels = np.unique(labels)
|
||||
stats = []
|
||||
|
||||
for label in unique_labels:
|
||||
cluster_points = data[labels == label]
|
||||
num_points = len(cluster_points)
|
||||
center = centers[label]
|
||||
stats.append({
|
||||
"cluster": label,
|
||||
"num_points": num_points,
|
||||
"center": center,
|
||||
})
|
||||
return stats
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "KMeans"
|
||||
|
||||
|
||||
CLUSTERING_STRATEGIES = [DBSCANCluster(), KMeansCluster()]
|
@ -0,0 +1,86 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.metrics import silhouette_score
|
||||
import numpy as np
|
||||
|
||||
st.header("Clustering")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
general_row = st.columns([1, 1, 1])
|
||||
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
|
||||
data_name = general_row[1].multiselect("Columns", data.select_dtypes(include="number").columns)
|
||||
n_components = general_row[2].number_input("Reduce dimensions to (PCA)", min_value=1, max_value=3, value=2)
|
||||
|
||||
with st.form("cluster_form"):
|
||||
if isinstance(clustering, KMeansCluster):
|
||||
row1 = st.columns([1, 1, 1])
|
||||
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
|
||||
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
|
||||
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
|
||||
elif isinstance(clustering, DBSCANCluster):
|
||||
row1 = st.columns([1, 1])
|
||||
clustering.eps = row1[0].slider("eps", min_value=0.0001, max_value=1.0, step=0.05, value=clustering.eps)
|
||||
clustering.min_samples = row1[1].number_input("min_samples", min_value=1, value=clustering.min_samples)
|
||||
|
||||
st.form_submit_button("Launch")
|
||||
|
||||
if len(data_name) > 0:
|
||||
x = data[data_name].to_numpy()
|
||||
n_components = min(n_components, len(data_name))
|
||||
if len(data_name) > n_components:
|
||||
pca = PCA(n_components)
|
||||
x = pca.fit_transform(x)
|
||||
if n_components == 2:
|
||||
(fig, ax) = plt.subplots(figsize=(8, 8))
|
||||
for i in range(0, pca.components_.shape[1]):
|
||||
ax.arrow(
|
||||
0,
|
||||
0,
|
||||
pca.components_[0, i],
|
||||
pca.components_[1, i],
|
||||
head_width=0.1,
|
||||
head_length=0.1
|
||||
)
|
||||
|
||||
plt.text(
|
||||
pca.components_[0, i] + 0.05,
|
||||
pca.components_[1, i] + 0.05,
|
||||
data_name[i]
|
||||
)
|
||||
circle = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
|
||||
ax.add_patch(circle)
|
||||
plt.axis("equal")
|
||||
ax.set_title("PCA result - Correlation circle")
|
||||
st.pyplot(fig)
|
||||
|
||||
result = clustering.run(x)
|
||||
st.write("## Cluster stats")
|
||||
st.table(result.statistics)
|
||||
|
||||
st.write("## Graphical representation")
|
||||
fig = plt.figure()
|
||||
if n_components == 1:
|
||||
plt.scatter(x, np.zeros_like(x))
|
||||
elif n_components == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
if not (result.labels == 0).all():
|
||||
st.write("Silhouette score:", silhouette_score(x, result.labels))
|
||||
else:
|
||||
st.error("Select at least one column")
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -1,35 +0,0 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
st.header("Clustering: dbscan")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
y_dbscan = dbscan.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
st.pyplot(fig)
|
||||
|
||||
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -1,44 +0,0 @@
|
||||
import streamlit as st
|
||||
from sklearn.cluster import KMeans
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
st.header("Clustering: kmeans")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
row1 = st.columns([1,1,1])
|
||||
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||
|
||||
row2 = st.columns([1,1])
|
||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||
|
||||
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
Loading…
Reference in new issue