Compare commits
5 Commits
stat_predi
...
main
Author | SHA1 | Date |
---|---|---|
![]() |
f464f6166a | 10 months ago |
|
3038bd9841 | 10 months ago |
|
7cb0d55969 | 10 months ago |
|
01ef19a2f8 | 10 months ago |
|
86bd285193 | 10 months ago |
@ -0,0 +1,86 @@
|
|||||||
|
import streamlit as st
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
|
from sklearn.metrics import silhouette_score
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
st.header("Clustering")
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
general_row = st.columns([1, 1, 1])
|
||||||
|
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
|
||||||
|
data_name = general_row[1].multiselect("Columns", data.select_dtypes(include="number").columns)
|
||||||
|
n_components = general_row[2].number_input("Reduce dimensions to (PCA)", min_value=1, max_value=3, value=2)
|
||||||
|
|
||||||
|
with st.form("cluster_form"):
|
||||||
|
if isinstance(clustering, KMeansCluster):
|
||||||
|
row1 = st.columns([1, 1, 1])
|
||||||
|
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
|
||||||
|
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
|
||||||
|
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
|
||||||
|
elif isinstance(clustering, DBSCANCluster):
|
||||||
|
row1 = st.columns([1, 1])
|
||||||
|
clustering.eps = row1[0].slider("eps", min_value=0.0001, max_value=1.0, step=0.05, value=clustering.eps)
|
||||||
|
clustering.min_samples = row1[1].number_input("min_samples", min_value=1, value=clustering.min_samples)
|
||||||
|
|
||||||
|
st.form_submit_button("Launch")
|
||||||
|
|
||||||
|
if len(data_name) > 0:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
n_components = min(n_components, len(data_name))
|
||||||
|
if len(data_name) > n_components:
|
||||||
|
pca = PCA(n_components)
|
||||||
|
x = pca.fit_transform(x)
|
||||||
|
if n_components == 2:
|
||||||
|
(fig, ax) = plt.subplots(figsize=(8, 8))
|
||||||
|
for i in range(0, pca.components_.shape[1]):
|
||||||
|
ax.arrow(
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
pca.components_[0, i],
|
||||||
|
pca.components_[1, i],
|
||||||
|
head_width=0.1,
|
||||||
|
head_length=0.1
|
||||||
|
)
|
||||||
|
|
||||||
|
plt.text(
|
||||||
|
pca.components_[0, i] + 0.05,
|
||||||
|
pca.components_[1, i] + 0.05,
|
||||||
|
data_name[i]
|
||||||
|
)
|
||||||
|
circle = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
|
||||||
|
ax.add_patch(circle)
|
||||||
|
plt.axis("equal")
|
||||||
|
ax.set_title("PCA result - Correlation circle")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
result = clustering.run(x)
|
||||||
|
st.write("## Cluster stats")
|
||||||
|
st.table(result.statistics)
|
||||||
|
|
||||||
|
st.write("## Graphical representation")
|
||||||
|
fig = plt.figure()
|
||||||
|
if n_components == 1:
|
||||||
|
plt.scatter(x, np.zeros_like(x))
|
||||||
|
elif n_components == 2:
|
||||||
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
|
||||||
|
if result.centers is not None:
|
||||||
|
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
|
||||||
|
if result.centers is not None:
|
||||||
|
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
|
||||||
|
st.pyplot(fig)
|
||||||
|
if not (result.labels == 0).all():
|
||||||
|
st.write("Silhouette score:", silhouette_score(x, result.labels))
|
||||||
|
else:
|
||||||
|
st.error("Select at least one column")
|
||||||
|
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
@ -1,32 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from clusters import DBSCAN_cluster
|
|
||||||
|
|
||||||
st.header("Clustering: dbscan")
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("my_form"):
|
|
||||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
|
||||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
|
||||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
|
||||||
st.form_submit_button("launch")
|
|
||||||
|
|
||||||
if len(data_name) >= 2 and len(data_name) <=3:
|
|
||||||
x = data[data_name].to_numpy()
|
|
||||||
|
|
||||||
dbscan = DBSCAN_cluster(eps,min_samples,x)
|
|
||||||
y_dbscan = dbscan.run()
|
|
||||||
st.table(dbscan.get_stats())
|
|
||||||
|
|
||||||
fig = plt.figure()
|
|
||||||
if len(data_name) == 2:
|
|
||||||
ax = fig.add_subplot(projection='rectilinear')
|
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
|
||||||
else:
|
|
||||||
ax = fig.add_subplot(projection='3d')
|
|
||||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
|
||||||
st.pyplot(fig)
|
|
||||||
else:
|
|
||||||
st.error("file not loaded")
|
|
@ -1,44 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from clusters import KMeans_cluster
|
|
||||||
|
|
||||||
st.header("Clustering: kmeans")
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("my_form"):
|
|
||||||
row1 = st.columns([1,1,1])
|
|
||||||
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
|
||||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
|
||||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
|
||||||
|
|
||||||
row2 = st.columns([1,1])
|
|
||||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
|
||||||
|
|
||||||
|
|
||||||
st.form_submit_button("launch")
|
|
||||||
|
|
||||||
if len(data_name) >= 2 and len(data_name) <=3:
|
|
||||||
x = data[data_name].to_numpy()
|
|
||||||
|
|
||||||
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
|
|
||||||
y_kmeans = kmeans.run()
|
|
||||||
|
|
||||||
st.table(kmeans.get_stats())
|
|
||||||
|
|
||||||
centers = kmeans.centers
|
|
||||||
fig = plt.figure()
|
|
||||||
if len(data_name) == 2:
|
|
||||||
ax = fig.add_subplot(projection='rectilinear')
|
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
|
||||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
|
||||||
else:
|
|
||||||
ax = fig.add_subplot(projection='3d')
|
|
||||||
|
|
||||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
|
||||||
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
|
||||||
st.pyplot(fig)
|
|
||||||
|
|
||||||
else:
|
|
||||||
st.error("file not loaded")
|
|
Loading…
Reference in new issue