@ -1,2 +1,2 @@
|
||||
__pycache__
|
||||
.venv
|
||||
*/myenv
|
||||
|
@ -0,0 +1,45 @@
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
|
||||
def perform_classification(data, data_name, target_name, test_size):
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
label_encoders = {}
|
||||
for column in X.select_dtypes(include=['object']).columns:
|
||||
le = LabelEncoder()
|
||||
X[column] = le.fit_transform(X[column])
|
||||
label_encoders[column] = le
|
||||
|
||||
if y.dtype == 'object':
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
label_encoders[target_name] = le
|
||||
else:
|
||||
if y.nunique() > 10:
|
||||
raise ValueError("The target variable seems to be continuous. Please select a categorical target for classification.")
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||
|
||||
model = LogisticRegression()
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
|
||||
return model, label_encoders, accuracy
|
||||
|
||||
def make_prediction(model, label_encoders, data_name, target_name, input_values):
|
||||
X_new = []
|
||||
for feature, value in zip(data_name, input_values):
|
||||
if feature in label_encoders:
|
||||
value = label_encoders[feature].transform([value])[0]
|
||||
X_new.append(value)
|
||||
|
||||
prediction = model.predict([X_new])
|
||||
|
||||
if target_name in label_encoders:
|
||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||
|
||||
return prediction[0]
|
@ -0,0 +1,16 @@
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
def perform_dbscan_clustering(data, data_name, eps, min_samples):
|
||||
x = data[data_name].to_numpy()
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
y_dbscan = dbscan.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
return fig
|
@ -0,0 +1,20 @@
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import KMeans
|
||||
|
||||
def perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter):
|
||||
x = data[data_name].to_numpy()
|
||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
||||
return fig
|
@ -0,0 +1,18 @@
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
def perform_regression(data, data_name, target_name):
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
if not isinstance(y.iloc[0], (int, float)):
|
||||
raise ValueError("The target variable should be numeric (continuous) for regression.")
|
||||
|
||||
model = LinearRegression()
|
||||
model.fit(X, y)
|
||||
|
||||
return model
|
||||
|
||||
def make_prediction(model, feature_names, input_values):
|
||||
prediction = model.predict([input_values])
|
||||
|
||||
return prediction[0]
|
@ -0,0 +1,16 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
def plot_histogram(data, column):
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f"Histogram of {column}")
|
||||
ax.set_xlabel(column)
|
||||
ax.set_ylabel("Frequency")
|
||||
return fig
|
||||
|
||||
def plot_boxplot(data, column):
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column, ax=ax)
|
||||
ax.set_title(f"Boxplot of {column}")
|
||||
return fig
|
@ -1,35 +1,22 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
st.header("Clustering: dbscan")
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
||||
from dbscan_strategy import perform_dbscan_clustering
|
||||
|
||||
st.header("Clustering: DBSCAN")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
with st.form("dbscan_form"):
|
||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
submitted = st.form_submit_button("Launch")
|
||||
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
y_dbscan = dbscan.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
if submitted and 2 <= len(data_name) <= 3:
|
||||
fig = perform_dbscan_clustering(data, data_name, eps, min_samples)
|
||||
st.pyplot(fig)
|
||||
|
||||
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
||||
st.error("File not loaded")
|
||||
|
@ -1,44 +1,26 @@
|
||||
import streamlit as st
|
||||
from sklearn.cluster import KMeans
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
st.header("Clustering: kmeans")
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
||||
from kmeans_strategy import perform_kmeans_clustering
|
||||
|
||||
st.header("Clustering: KMeans")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
with st.form("kmeans_form"):
|
||||
row1 = st.columns([1, 1, 1])
|
||||
n_clusters = row1[0].selectbox("Number of clusters", range(1, data.shape[0]))
|
||||
data_name = row1[1].multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
n_init = row1[2].number_input("n_init", step=1, min_value=1)
|
||||
|
||||
row2 = st.columns([1, 1])
|
||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||
|
||||
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
max_iter = row2[0].number_input("max_iter", step=1, min_value=1)
|
||||
submitted = st.form_submit_button("Launch")
|
||||
|
||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||
if submitted and 2 <= len(data_name) <= 3:
|
||||
fig = perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter)
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
||||
st.error("File not loaded")
|
||||
|
@ -1,30 +1,25 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
||||
from visualization_strategy import plot_histogram, plot_boxplot
|
||||
|
||||
st.header("Data Visualization")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
st.subheader("Histogram")
|
||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f"Histogram of {column_to_plot}")
|
||||
ax.set_xlabel(column_to_plot)
|
||||
ax.set_ylabel("Frequency")
|
||||
fig = plot_histogram(data, column_to_plot)
|
||||
st.pyplot(fig)
|
||||
|
||||
st.subheader("Boxplot")
|
||||
dataNumeric = data.select_dtypes(include="number")
|
||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||
ax.set_title(f"Boxplot of {column_to_plot}")
|
||||
fig = plot_boxplot(data, column_to_plot)
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("file not loaded")
|
Loading…
Reference in new issue