You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
miner/frontend/pages/clustering.py

87 lines
3.7 KiB

import streamlit as st
import matplotlib.pyplot as plt
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import numpy as np
st.header("Clustering")
if "data" in st.session_state:
data = st.session_state.data
general_row = st.columns([1, 1, 1])
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
data_name = general_row[1].multiselect("Columns", data.select_dtypes(include="number").columns)
n_components = general_row[2].number_input("Reduce dimensions to (PCA)", min_value=1, max_value=3, value=2)
with st.form("cluster_form"):
if isinstance(clustering, KMeansCluster):
row1 = st.columns([1, 1, 1])
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
elif isinstance(clustering, DBSCANCluster):
row1 = st.columns([1, 1])
clustering.eps = row1[0].slider("eps", min_value=0.0001, max_value=1.0, step=0.05, value=clustering.eps)
clustering.min_samples = row1[1].number_input("min_samples", min_value=1, value=clustering.min_samples)
st.form_submit_button("Launch")
if len(data_name) > 0:
x = data[data_name].to_numpy()
n_components = min(n_components, len(data_name))
if len(data_name) > n_components:
pca = PCA(n_components)
x = pca.fit_transform(x)
if n_components == 2:
(fig, ax) = plt.subplots(figsize=(8, 8))
for i in range(0, pca.components_.shape[1]):
ax.arrow(
0,
0,
pca.components_[0, i],
pca.components_[1, i],
head_width=0.1,
head_length=0.1
)
plt.text(
pca.components_[0, i] + 0.05,
pca.components_[1, i] + 0.05,
data_name[i]
)
circle = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
ax.add_patch(circle)
plt.axis("equal")
ax.set_title("PCA result - Correlation circle")
st.pyplot(fig)
result = clustering.run(x)
st.write("## Cluster stats")
st.table(result.statistics)
st.write("## Graphical representation")
fig = plt.figure()
if n_components == 1:
plt.scatter(x, np.zeros_like(x))
elif n_components == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
if result.centers is not None:
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
if result.centers is not None:
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig)
if not (result.labels == 0).all():
st.write("Silhouette score:", silhouette_score(x, result.labels))
else:
st.error("Select at least one column")
else:
st.error("file not loaded")