You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

75 lines
1.9 KiB

[![Build Status](https://codefirst.iut.uca.fr/api/badges/PyPloteam/PlotaFakeNews/status.svg)](https://codefirst.iut.uca.fr/PyPloteam/PlotaFakeNews)
### Built with
![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)
![Django](https://img.shields.io/badge/django-%23092E20.svg?style=for-the-badge&logo=django&logoColor=white)
![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
# Fake News Detector
## Getting started
Clone repo:
```shell
git clone https://codefirst.iut.uca.fr/git/PyPloteam/PlotaFakeNews.git
```
Install requirements using:
```shell
pip install -r requirements.txt
```
## Training script
```shell
cd src/
```
```shell
python3 main.py
```
## Launch web app
```shell
cd src/app/
```
```shell
python3 manage.py runserver
```
## Dataset informations
[FakeNews Dataset](https://www.kaggle.com/datasets/algord/fake-news)
| **title** | **news_url** | **source_domain** | _tweet_num_ | **real** |
|---|---|---|---|---|
| title of the article | URL of the article | web domain where article was posted | _number of retweets for this article_ | 1 is real and 0 is fake |
_(N.B. Italic columns are not used for learning models)_
## References
- [scikit-learn models](https://scikit-learn.org/stable/supervised_learning.html)
- [Label encoder _with scikit-learn_](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html)
- [Django documentation](https://www.djangoproject.com/en/5.0/)
- [Datas provenance](https://github.com/KaiDMML/FakeNewsNet)
## Authors
[LIVET Hugo](https://codefirst.iut.uca.fr/git/hugo.livet)
[DE LA FUENTE Axel](https://codefirst.iut.uca.fr/git/axel.de_la_fuente)
## Acknowledgements
Thanks to our professor for his guidance and feedback throughout the development of this project.
- SAMIR Chafik