|
|
@ -1,5 +1,6 @@
|
|
|
|
import streamlit as st
|
|
|
|
import streamlit as st
|
|
|
|
from sklearn.linear_model import LinearRegression
|
|
|
|
from sklearn.linear_model import LinearRegression
|
|
|
|
|
|
|
|
from sklearn.metrics import r2_score
|
|
|
|
import pandas as pd
|
|
|
|
import pandas as pd
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
@ -21,6 +22,10 @@ if "data" in st.session_state:
|
|
|
|
model = LinearRegression()
|
|
|
|
model = LinearRegression()
|
|
|
|
model.fit(X, y)
|
|
|
|
model.fit(X, y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
|
|
|
|
|
|
|
r2 = r2_score(y, y_pred)
|
|
|
|
|
|
|
|
st.write('R-squared score:', r2)
|
|
|
|
|
|
|
|
|
|
|
|
st.subheader("Enter values for prediction")
|
|
|
|
st.subheader("Enter values for prediction")
|
|
|
|
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
|
|
|
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
|
|
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
|
|
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
|
|
|