Compare commits
20 Commits
a848a4b81d
...
2d1c867bed
Author | SHA1 | Date |
---|---|---|
|
2d1c867bed | 10 months ago |
|
a914c3f8f9 | 10 months ago |
|
70641ebca4 | 10 months ago |
|
e5f05a2c8a | 10 months ago |
|
972fde561f | 10 months ago |
|
694ecd0eef | 10 months ago |
|
e255c67972 | 10 months ago |
|
e48c3bfa50 | 10 months ago |
|
52cb140746 | 10 months ago |
|
6dcca29cbd | 10 months ago |
|
c1f5e55a0b | 10 months ago |
|
34f70b4d79 | 10 months ago |
|
64cf65a417 | 10 months ago |
|
d4e33e7367 | 10 months ago |
|
72dcc8ff1c | 10 months ago |
|
9fc6d7d2d1 | 10 months ago |
|
a325603fd9 | 10 months ago |
|
197939555c | 10 months ago |
|
5f960df838 | 11 months ago |
|
63bce82b3b | 11 months ago |
@ -1 +1,2 @@
|
||||
.venv
|
||||
__pycache__
|
||||
.venv
|
||||
|
@ -0,0 +1,138 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
from typing import Any, Union
|
||||
|
||||
class DataFrameFunction(ABC):
|
||||
"""A command that may be applied in-place to a dataframe."""
|
||||
|
||||
@abstractmethod
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
"""Apply the current function to the given dataframe, in-place.
|
||||
|
||||
The series is described by its label and dataframe."""
|
||||
return df
|
||||
|
||||
|
||||
class MVStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [DropStrategy(), ModeStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||
return choices
|
||||
|
||||
|
||||
class ScalingStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [KeepStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
||||
if series.sum() != 0:
|
||||
choices.append(UnitLengthStrategy())
|
||||
return choices
|
||||
|
||||
|
||||
class DropStrategy(MVStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df.dropna(subset=label, inplace=True)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Drop"
|
||||
|
||||
|
||||
class PositionStrategy(MVStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
series.fillna(self.get_value(series), inplace=True)
|
||||
return df
|
||||
|
||||
@abstractmethod
|
||||
def get_value(self, series: Series) -> Any:
|
||||
pass
|
||||
|
||||
|
||||
class MeanStrategy(PositionStrategy):
|
||||
#@typing.override
|
||||
def get_value(self, series: Series) -> Union[int, float]:
|
||||
return series.mean()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use mean"
|
||||
|
||||
|
||||
class MedianStrategy(PositionStrategy):
|
||||
#@typing.override
|
||||
def get_value(self, series: Series) -> Union[int, float]:
|
||||
return series.median()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use median"
|
||||
|
||||
|
||||
class ModeStrategy(PositionStrategy):
|
||||
#@typing.override
|
||||
def get_value(self, series: Series) -> Any:
|
||||
return series.mode()[0]
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use mode"
|
||||
|
||||
|
||||
class LinearRegressionStrategy(MVStrategy):
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
series.interpolate(inplace=True)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use linear regression"
|
||||
|
||||
|
||||
class KeepStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "No-op"
|
||||
|
||||
|
||||
class MinMaxStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
minimum = series.min()
|
||||
maximum = series.max()
|
||||
df[label] = (series - minimum) / (maximum - minimum)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Min-max"
|
||||
|
||||
|
||||
class ZScoreStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df[label] = (series - series.mean()) / series.std()
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Z-Score"
|
||||
|
||||
|
||||
class UnitLengthStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df[label] = series / series.sum()
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Unit length"
|
@ -1,35 +0,0 @@
|
||||
import streamlit as st
|
||||
from sklearn.cluster import KMeans
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
st.header("Clustering")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
row1 = st.columns([1,1,1])
|
||||
n_clusters = row1[0].selectbox("Number of clusters", range(1, 10))
|
||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2)
|
||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||
|
||||
row2 = st.columns([1,1])
|
||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||
|
||||
|
||||
st.form_submit_button('launch')
|
||||
|
||||
if len(data_name) == 2:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
kmeans = KMeans(n_clusters=n_clusters, init='random', n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12,8))
|
||||
plt.scatter(x[:, 0], x[:, 1], s=100, c=kmeans.labels_, cmap='Set1')
|
||||
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=400, marker='*', color='k')
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -0,0 +1,35 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
st.header("Clustering: dbscan")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
y_dbscan = dbscan.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
st.pyplot(fig)
|
||||
|
||||
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -0,0 +1,44 @@
|
||||
import streamlit as st
|
||||
from sklearn.cluster import KMeans
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
st.header("Clustering: kmeans")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
row1 = st.columns([1,1,1])
|
||||
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||
|
||||
row2 = st.columns([1,1])
|
||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||
|
||||
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -0,0 +1,32 @@
|
||||
import streamlit as st
|
||||
from normstrategy import MVStrategy, ScalingStrategy
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.original_data
|
||||
st.session_state.original_data = data.copy()
|
||||
|
||||
for column, series in data.items():
|
||||
col1, col2 = st.columns(2)
|
||||
missing_count = series.isna().sum()
|
||||
choices = MVStrategy.list_available(data, series)
|
||||
option = col1.selectbox(
|
||||
f"Missing values of {column} ({missing_count})",
|
||||
choices,
|
||||
index=1,
|
||||
key=f"mv-{column}",
|
||||
)
|
||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
choices = ScalingStrategy.list_available(data, series)
|
||||
option = col2.selectbox(
|
||||
"Scaling",
|
||||
choices,
|
||||
key=f"scaling-{column}",
|
||||
)
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
st.write(data)
|
||||
st.session_state.data = data
|
||||
else:
|
||||
st.error("file not loaded")
|
Loading…
Reference in new issue