Compare commits

..

No commits in common. 'main' and 'prediction' have entirely different histories.

@ -1,44 +0,0 @@
kind: pipeline
name: default
type: docker
trigger:
event:
- push
steps:
- name: lint
image: python:3.12
commands:
- pip install --root-user-action=ignore -r requirements.txt
- ruff check .
- name: docker-image
image: plugins/docker
settings:
dockerfile: Dockerfile
registry: hub.codefirst.iut.uca.fr
repo: hub.codefirst.iut.uca.fr/bastien.ollier/miner
username:
from_secret: REGISTRY_USER
password:
from_secret: REGISTRY_PASSWORD
cache_from:
- hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
depends_on: [ lint ]
- name: deploy-miner
image: hub.codefirst.iut.uca.fr/clement.freville2/codefirst-dockerproxy-clientdrone:latest
settings:
image: hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
container: miner
command: create
overwrite: true
admins: bastienollier,clementfreville2,hugopradier2
environment:
DRONE_REPO_OWNER: bastien.ollier
depends_on: [ docker-image ]
when:
branch:
- main
- ci/*

@ -1,9 +0,0 @@
FROM python:3.12-slim
WORKDIR /app
COPY . .
RUN pip3 install -r requirements.txt
EXPOSE 80
ENTRYPOINT ["streamlit", "run", "frontend/exploration.py", "--server.port=80", "--server.address=0.0.0.0", "--server.baseUrlPath=/containers/bastienollier-miner"]

@ -1,83 +0,0 @@
from sklearn.cluster import DBSCAN, KMeans
import numpy as np
from dataclasses import dataclass
from abc import ABC, abstractmethod
from typing import Any, Optional
@dataclass
class ClusterResult:
labels: np.array
centers: Optional[np.array]
statistics: list[dict[str, Any]]
class Cluster(ABC):
@abstractmethod
def run(self, data: np.array) -> ClusterResult:
pass
class DBSCANCluster(Cluster):
def __init__(self, eps: float = 0.5, min_samples: int = 5):
self.eps = eps
self.min_samples = min_samples
#@typing.override
def run(self, data: np.array) -> ClusterResult:
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
labels = dbscan.fit_predict(data)
return ClusterResult(labels, None, self.get_statistics(data, labels))
def get_statistics(self, data: np.array, labels: np.array) -> list[dict[str, Any]]:
unique_labels = np.unique(labels)
stats = []
for label in unique_labels:
if label == -1:
continue
cluster_points = data[labels == label]
num_points = len(cluster_points)
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
stats.append({
"cluster": label,
"num_points": num_points,
"density": density
})
return stats
def __str__(self) -> str:
return "DBScan"
class KMeansCluster(Cluster):
def __init__(self, n_clusters: int = 8, n_init: int = 1, max_iter: int = 300):
self.n_clusters = n_clusters
self.n_init = n_init
self.max_iter = max_iter
#@typing.override
def run(self, data: np.array) -> ClusterResult:
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
labels = kmeans.fit_predict(data)
centers = kmeans.cluster_centers_
return ClusterResult(labels, centers, self.get_statistics(data, labels, centers))
def get_statistics(self, data: np.array, labels: np.array, centers: np.array) -> list[dict[str, Any]]:
unique_labels = np.unique(labels)
stats = []
for label in unique_labels:
cluster_points = data[labels == label]
num_points = len(cluster_points)
center = centers[label]
stats.append({
"cluster": label,
"num_points": num_points,
"center": center,
})
return stats
def __str__(self) -> str:
return "KMeans"
CLUSTERING_STRATEGIES = [DBSCANCluster(), KMeansCluster()]

@ -1,6 +1,5 @@
import pandas as pd import pandas as pd
import streamlit as st import streamlit as st
import codecs
st.set_page_config( st.set_page_config(
page_title="Project Miner", page_title="Project Miner",
@ -10,13 +9,10 @@ st.set_page_config(
st.title("Home") st.title("Home")
### Exploration ### Exploration
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"]) uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
separator = st.selectbox("Separator", [",", ";", "\\t"])
separator = codecs.getdecoder("unicode_escape")(separator)[0]
has_header = st.checkbox("Has header", value=True)
if uploaded_file is not None: if uploaded_file is not None:
st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1) st.session_state.data = pd.read_csv(uploaded_file)
st.session_state.original_data = st.session_state.data st.session_state.original_data = st.session_state.data
st.success("File loaded successfully!") st.success("File loaded successfully!")

@ -1,7 +1,6 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pandas import DataFrame, Series from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype from pandas.api.types import is_numeric_dtype
from sklearn.neighbors import KNeighborsClassifier
from typing import Any, Union from typing import Any, Union
class DataFrameFunction(ABC): class DataFrameFunction(ABC):
@ -19,14 +18,11 @@ class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe.""" """A way to handle missing values in a dataframe."""
@staticmethod @staticmethod
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']: def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used.""" """Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()] choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series): if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy())) choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
if len(other_columns):
choices.append(KNNStrategy(other_columns))
return choices return choices
@ -101,43 +97,6 @@ class LinearRegressionStrategy(MVStrategy):
return "Use linear regression" return "Use linear regression"
class KNNStrategy(MVStrategy):
def __init__(self, training_features: list[str]):
self.available_features = training_features
self.training_features = training_features
self.n_neighbors = 3
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
# Remove any training column that have any missing values
usable_data = df.dropna(subset=self.training_features)
# Select columns to impute from
train_data = usable_data.dropna(subset=label)
# Create train dataframe
x_train = train_data.drop(label, axis=1)
y_train = train_data[label]
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
# Create test dataframe
test_data = usable_data[usable_data[label].isnull()]
if test_data.empty:
return df
x_test = test_data.drop(label, axis=1)
predicted = reg.predict(x_test)
# Fill with predicated values and patch the original data
usable_data[label].fillna(Series(predicted), inplace=True)
df.fillna(usable_data, inplace=True)
return df
def count_max(self, df: DataFrame, label: str) -> int:
usable_data = df.dropna(subset=self.training_features)
return usable_data[label].count()
def __str__(self) -> str:
return "kNN"
class KeepStrategy(ScalingStrategy): class KeepStrategy(ScalingStrategy):
#@typing.override #@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame: def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:

@ -1,86 +0,0 @@
import streamlit as st
import matplotlib.pyplot as plt
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import numpy as np
st.header("Clustering")
if "data" in st.session_state:
data = st.session_state.data
general_row = st.columns([1, 1, 1])
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
data_name = general_row[1].multiselect("Columns", data.select_dtypes(include="number").columns)
n_components = general_row[2].number_input("Reduce dimensions to (PCA)", min_value=1, max_value=3, value=2)
with st.form("cluster_form"):
if isinstance(clustering, KMeansCluster):
row1 = st.columns([1, 1, 1])
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
elif isinstance(clustering, DBSCANCluster):
row1 = st.columns([1, 1])
clustering.eps = row1[0].slider("eps", min_value=0.0001, max_value=1.0, step=0.05, value=clustering.eps)
clustering.min_samples = row1[1].number_input("min_samples", min_value=1, value=clustering.min_samples)
st.form_submit_button("Launch")
if len(data_name) > 0:
x = data[data_name].to_numpy()
n_components = min(n_components, len(data_name))
if len(data_name) > n_components:
pca = PCA(n_components)
x = pca.fit_transform(x)
if n_components == 2:
(fig, ax) = plt.subplots(figsize=(8, 8))
for i in range(0, pca.components_.shape[1]):
ax.arrow(
0,
0,
pca.components_[0, i],
pca.components_[1, i],
head_width=0.1,
head_length=0.1
)
plt.text(
pca.components_[0, i] + 0.05,
pca.components_[1, i] + 0.05,
data_name[i]
)
circle = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
ax.add_patch(circle)
plt.axis("equal")
ax.set_title("PCA result - Correlation circle")
st.pyplot(fig)
result = clustering.run(x)
st.write("## Cluster stats")
st.table(result.statistics)
st.write("## Graphical representation")
fig = plt.figure()
if n_components == 1:
plt.scatter(x, np.zeros_like(x))
elif n_components == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
if result.centers is not None:
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
if result.centers is not None:
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig)
if not (result.labels == 0).all():
st.write("Silhouette score:", silhouette_score(x, result.labels))
else:
st.error("Select at least one column")
else:
st.error("file not loaded")

@ -0,0 +1,35 @@
import streamlit as st
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
st.header("Clustering: dbscan")
if "data" in st.session_state:
data = st.session_state.data
with st.form("my_form"):
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
st.form_submit_button("launch")
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
y_dbscan = dbscan.fit_predict(x)
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
st.pyplot(fig)
else:
st.error("file not loaded")

@ -0,0 +1,44 @@
import streamlit as st
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
st.header("Clustering: kmeans")
if "data" in st.session_state:
data = st.session_state.data
with st.form("my_form"):
row1 = st.columns([1,1,1])
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
n_init = row1[2].number_input("n_init",step=1,min_value=1)
row2 = st.columns([1,1])
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
st.form_submit_button("launch")
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
y_kmeans = kmeans.fit_predict(x)
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig)
else:
st.error("file not loaded")

@ -1,5 +1,5 @@
import streamlit as st import streamlit as st
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy from normstrategy import MVStrategy, ScalingStrategy
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.original_data data = st.session_state.original_data
@ -8,16 +8,13 @@ if "data" in st.session_state:
for column, series in data.items(): for column, series in data.items():
col1, col2 = st.columns(2) col1, col2 = st.columns(2)
missing_count = series.isna().sum() missing_count = series.isna().sum()
choices = MVStrategy.list_available(data, column, series) choices = MVStrategy.list_available(data, series)
option = col1.selectbox( option = col1.selectbox(
f"Missing values of {column} ({missing_count})", f"Missing values of {column} ({missing_count})",
choices, choices,
index=1, index=1,
key=f"mv-{column}", key=f"mv-{column}",
) )
if isinstance(option, KNNStrategy):
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, max_value=option.count_max(data, column), value=option.n_neighbors, key=f"neighbors-{column}")
# Always re-get the series to avoid reusing an invalidated series pointer # Always re-get the series to avoid reusing an invalidated series pointer
data = option.apply(data, column, data[column]) data = option.apply(data, column, data[column])

@ -1,11 +1,9 @@
import streamlit as st import streamlit as st
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder
import pandas as pd import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
st.header("Prediction: Classification") st.header("Prediction: Classification")
@ -62,18 +60,5 @@ if "data" in st.session_state:
prediction = label_encoders[target_name].inverse_transform(prediction) prediction = label_encoders[target_name].inverse_transform(prediction)
st.write("Prediction:", prediction[0]) st.write("Prediction:", prediction[0])
if len(data_name) == 1:
fig = plt.figure()
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
cm = confusion_matrix(y, y_pred)
sns.heatmap(cm, annot=True, fmt="d")
plt.xlabel('Predicted')
plt.ylabel('True')
st.pyplot(fig)
else: else:
st.error("File not loaded") st.error("File not loaded")

@ -1,8 +1,6 @@
import streamlit as st import streamlit as st
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
import pandas as pd import pandas as pd
import matplotlib.pyplot as plt
st.header("Prediction: Regression") st.header("Prediction: Regression")
@ -27,37 +25,5 @@ if "data" in st.session_state:
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name)) prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
st.write("Prediction:", prediction[0]) st.write("Prediction:", prediction[0])
fig = plt.figure()
dataframe_sorted = pd.concat([X, y], axis=1).sort_values(by=data_name)
if len(data_name) == 1:
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
r2 = r2_score(y, y_pred)
st.write('R-squared score:', r2)
X = dataframe_sorted[data_name[0]]
y = dataframe_sorted[target_name]
prediction_array_y = [
model.predict(pd.DataFrame([[dataframe_sorted[data_name[0]].iloc[i]]], columns=data_name))[0]
for i in range(dataframe_sorted.shape[0])
]
plt.scatter(dataframe_sorted[data_name[0]], dataframe_sorted[target_name], color='b')
plt.plot(dataframe_sorted[data_name[0]], prediction_array_y, color='r')
elif len(data_name) == 2:
ax = fig.add_subplot(111, projection='3d')
prediction_array_y = [
model.predict(pd.DataFrame([[dataframe_sorted[data_name[0]].iloc[i], dataframe_sorted[data_name[1]].iloc[i]]], columns=data_name))[0]
for i in range(dataframe_sorted.shape[0])
]
ax.scatter(dataframe_sorted[data_name[0]], dataframe_sorted[data_name[1]], dataframe_sorted[target_name], color='b')
ax.plot(dataframe_sorted[data_name[0]], dataframe_sorted[data_name[1]], prediction_array_y, color='r')
st.pyplot(fig)
else: else:
st.error("File not loaded") st.error("File not loaded")

@ -1,6 +0,0 @@
matplotlib>=3.5.0
pandas>=1.5.0
seaborn>=0.12.0
scikit-learn>=0.23.0
streamlit>=1.35.0
ruff>=0.4.8
Loading…
Cancel
Save