Ajout de la prédiction avec deux algos (un de prédiction et un de classification) #7
Merged
hugo.pradier2
merged 4 commits from prediction
into main
10 months ago
@ -1 +1,2 @@
|
||||
__pycache__
|
||||
.venv
|
||||
|
@ -0,0 +1,64 @@
|
||||
import streamlit as st
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pandas as pd
|
||||
|
||||
st.header("Prediction: Classification")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("classification_form"):
|
||||
st.subheader("Classification Parameters")
|
||||
data_name = st.multiselect("Features", data.columns)
|
||||
target_name = st.selectbox("Target", data.columns)
|
||||
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
||||
st.form_submit_button('Train and Predict')
|
||||
|
||||
if data_name and target_name:
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
label_encoders = {}
|
||||
for column in X.select_dtypes(include=['object']).columns:
|
||||
le = LabelEncoder()
|
||||
X[column] = le.fit_transform(X[column])
|
||||
label_encoders[column] = le
|
||||
|
||||
if y.dtype == 'object':
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
label_encoders[target_name] = le
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||
|
||||
model = LogisticRegression()
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
|
||||
st.subheader("Model Accuracy")
|
||||
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
||||
|
||||
st.subheader("Enter values for prediction")
|
||||
pred_values = []
|
||||
for feature in data_name:
|
||||
if feature in label_encoders:
|
||||
values = list(label_encoders[feature].classes_)
|
||||
value = st.selectbox(f"Value for {feature}", values)
|
||||
value_encoded = label_encoders[feature].transform([value])[0]
|
||||
pred_values.append(value_encoded)
|
||||
else:
|
||||
value = st.number_input(f"Value for {feature}", value=0.0)
|
||||
pred_values.append(value)
|
||||
|
||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||
|
||||
if target_name in label_encoders:
|
||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||
|
||||
st.write("Prediction:", prediction[0])
|
||||
else:
|
||||
st.error("File not loaded")
|
@ -0,0 +1,29 @@
|
||||
import streamlit as st
|
||||
from sklearn.linear_model import LinearRegression
|
||||
import pandas as pd
|
||||
|
||||
st.header("Prediction: Regression")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("regression_form"):
|
||||
st.subheader("Linear Regression Parameters")
|
||||
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
||||
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
||||
st.form_submit_button('Train and Predict')
|
||||
|
||||
if data_name and target_name:
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
model = LinearRegression()
|
||||
model.fit(X, y)
|
||||
|
||||
st.subheader("Enter values for prediction")
|
||||
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||
|
||||
st.write("Prediction:", prediction[0])
|
||||
else:
|
||||
st.error("File not loaded")
|
Loading…
Reference in new issue