Compare commits

...

15 Commits

Author SHA1 Message Date
Bastien OLLIER c8cf0fe045 add stats
continuous-integration/drone/push Build is passing Details
1 year ago
Clément FRÉVILLE 4d82767c68 Add SkLearn to requirements.txt
continuous-integration/drone/push Build is passing Details
1 year ago
Bastien OLLIER 9cb0d90eb1 Add CI/CD (#9)
continuous-integration/drone/push Build is passing Details
1 year ago
Bastien OLLIER 3eac3f6b8d Merge pull request 'Support multiple column delimiters' (#10) from csv-delimiters into main
1 year ago
Clément FRÉVILLE c87308cc21 Support multiple column delimiters
1 year ago
Clément FRÉVILLE d4aeb87f75 Limit the number of neighbors based on the dataframe
1 year ago
Hugo PRADIER 3c5f6849f8 Merge pull request 'Support kNN as an imputation method' (#8) from knn into main
1 year ago
Clément FRÉVILLE cd0c85ea44 Support kNN as an imputation method
1 year ago
Hugo PRADIER 96d390c749 Merge pull request 'Ajout de la prédiction avec deux algos (un de prédiction et un de classification)' (#7) from prediction into main
1 year ago
Hugo PRADIER 089cc66042 correctifs
1 year ago
Hugo PRADIER 2d1c867bed ajout prediction classification
1 year ago
Hugo PRADIER a914c3f8f9 prediction de regression terminee
1 year ago
Hugo PRADIER 70641ebca4 debut prediction
1 year ago
Bastien OLLIER e5f05a2c8a Mise à jour de 'frontend/pages/clustering_kmeans.py'
1 year ago
Bastien OLLIER 972fde561f Mise à jour de 'frontend/pages/clustering_dbscan.py'
1 year ago

@ -0,0 +1,44 @@
kind: pipeline
name: default
type: docker
trigger:
event:
- push
steps:
- name: lint
image: python:3.12
commands:
- pip install --root-user-action=ignore -r requirements.txt
- ruff check .
- name: docker-image
image: plugins/docker
settings:
dockerfile: Dockerfile
registry: hub.codefirst.iut.uca.fr
repo: hub.codefirst.iut.uca.fr/bastien.ollier/miner
username:
from_secret: REGISTRY_USER
password:
from_secret: REGISTRY_PASSWORD
cache_from:
- hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
depends_on: [ lint ]
- name: deploy-miner
image: hub.codefirst.iut.uca.fr/clement.freville2/codefirst-dockerproxy-clientdrone:latest
settings:
image: hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
container: miner
command: create
overwrite: true
admins: bastienollier,clementfreville2,hugopradier2
environment:
DRONE_REPO_OWNER: bastien.ollier
depends_on: [ docker-image ]
when:
branch:
- main
- ci/*

1
.gitignore vendored

@ -1 +1,2 @@
__pycache__
.venv

@ -0,0 +1,9 @@
FROM python:3.12-slim
WORKDIR /app
COPY . .
RUN pip3 install -r requirements.txt
EXPOSE 80
ENTRYPOINT ["streamlit", "run", "frontend/exploration.py", "--server.port=80", "--server.address=0.0.0.0", "--server.baseUrlPath=/containers/bastienollier-miner"]

@ -0,0 +1,63 @@
from sklearn.cluster import DBSCAN, KMeans
import numpy as np
class DBSCAN_cluster():
def __init__(self, eps, min_samples,data):
self.eps = eps
self.min_samples = min_samples
self.data = data
self.labels = np.array([])
def run(self):
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
self.labels = dbscan.fit_predict(self.data)
return self.labels
def get_stats(self):
unique_labels = np.unique(self.labels)
stats = []
for label in unique_labels:
if label == -1:
continue
cluster_points = self.data[self.labels == label]
num_points = len(cluster_points)
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
stats.append({
"cluster": label,
"num_points": num_points,
"density": density
})
return stats
class KMeans_cluster():
def __init__(self, n_clusters, n_init, max_iter, data):
self.n_clusters = n_clusters
self.n_init = n_init
self.max_iter = max_iter
self.data = data
self.labels = np.array([])
self.centers = []
def run(self):
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
self.labels = kmeans.fit_predict(self.data)
self.centers = kmeans.cluster_centers_
return self.labels
def get_stats(self):
unique_labels = np.unique(self.labels)
stats = []
for label in unique_labels:
cluster_points = self.data[self.labels == label]
num_points = len(cluster_points)
center = self.centers[label]
stats.append({
'cluster': label,
'num_points': num_points,
'center': center
})
return stats

@ -1,5 +1,6 @@
import pandas as pd
import streamlit as st
import codecs
st.set_page_config(
page_title="Project Miner",
@ -9,10 +10,13 @@ st.set_page_config(
st.title("Home")
### Exploration
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"])
separator = st.selectbox("Separator", [",", ";", "\\t"])
separator = codecs.getdecoder("unicode_escape")(separator)[0]
has_header = st.checkbox("Has header", value=True)
if uploaded_file is not None:
st.session_state.data = pd.read_csv(uploaded_file)
st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1)
st.session_state.original_data = st.session_state.data
st.success("File loaded successfully!")

@ -1,6 +1,7 @@
from abc import ABC, abstractmethod
from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype
from sklearn.neighbors import KNeighborsClassifier
from typing import Any, Union
class DataFrameFunction(ABC):
@ -18,11 +19,14 @@ class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
if len(other_columns):
choices.append(KNNStrategy(other_columns))
return choices
@ -97,6 +101,43 @@ class LinearRegressionStrategy(MVStrategy):
return "Use linear regression"
class KNNStrategy(MVStrategy):
def __init__(self, training_features: list[str]):
self.available_features = training_features
self.training_features = training_features
self.n_neighbors = 3
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
# Remove any training column that have any missing values
usable_data = df.dropna(subset=self.training_features)
# Select columns to impute from
train_data = usable_data.dropna(subset=label)
# Create train dataframe
x_train = train_data.drop(label, axis=1)
y_train = train_data[label]
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
# Create test dataframe
test_data = usable_data[usable_data[label].isnull()]
if test_data.empty:
return df
x_test = test_data.drop(label, axis=1)
predicted = reg.predict(x_test)
# Fill with predicated values and patch the original data
usable_data[label].fillna(Series(predicted), inplace=True)
df.fillna(usable_data, inplace=True)
return df
def count_max(self, df: DataFrame, label: str) -> int:
usable_data = df.dropna(subset=self.training_features)
return usable_data[label].count()
def __str__(self) -> str:
return "kNN"
class KeepStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:

@ -1,10 +1,9 @@
import streamlit as st
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from clusters import DBSCAN_cluster
st.header("Clustering: dbscan")
if "data" in st.session_state:
data = st.session_state.data
@ -17,8 +16,9 @@ if "data" in st.session_state:
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
y_dbscan = dbscan.fit_predict(x)
dbscan = DBSCAN_cluster(eps,min_samples,x)
y_dbscan = dbscan.run()
st.table(dbscan.get_stats())
fig = plt.figure()
if len(data_name) == 2:
@ -28,8 +28,5 @@ if "data" in st.session_state:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
st.pyplot(fig)
else:
st.error("file not loaded")

@ -1,10 +1,9 @@
import streamlit as st
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from clusters import KMeans_cluster
st.header("Clustering: kmeans")
if "data" in st.session_state:
data = st.session_state.data
@ -23,21 +22,22 @@ if "data" in st.session_state:
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
y_kmeans = kmeans.fit_predict(x)
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
y_kmeans = kmeans.run()
st.table(kmeans.get_stats())
centers = kmeans.centers
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig)
else:

@ -1,5 +1,5 @@
import streamlit as st
from normstrategy import MVStrategy, ScalingStrategy
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
if "data" in st.session_state:
data = st.session_state.original_data
@ -8,13 +8,16 @@ if "data" in st.session_state:
for column, series in data.items():
col1, col2 = st.columns(2)
missing_count = series.isna().sum()
choices = MVStrategy.list_available(data, series)
choices = MVStrategy.list_available(data, column, series)
option = col1.selectbox(
f"Missing values of {column} ({missing_count})",
choices,
index=1,
key=f"mv-{column}",
)
if isinstance(option, KNNStrategy):
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, max_value=option.count_max(data, column), value=option.n_neighbors, key=f"neighbors-{column}")
# Always re-get the series to avoid reusing an invalidated series pointer
data = option.apply(data, column, data[column])

@ -0,0 +1,64 @@
import streamlit as st
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import pandas as pd
st.header("Prediction: Classification")
if "data" in st.session_state:
data = st.session_state.data
with st.form("classification_form"):
st.subheader("Classification Parameters")
data_name = st.multiselect("Features", data.columns)
target_name = st.selectbox("Target", data.columns)
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
label_encoders = {}
for column in X.select_dtypes(include=['object']).columns:
le = LabelEncoder()
X[column] = le.fit_transform(X[column])
label_encoders[column] = le
if y.dtype == 'object':
le = LabelEncoder()
y = le.fit_transform(y)
label_encoders[target_name] = le
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
st.subheader("Model Accuracy")
st.write(f"Accuracy on test data: {accuracy:.2f}")
st.subheader("Enter values for prediction")
pred_values = []
for feature in data_name:
if feature in label_encoders:
values = list(label_encoders[feature].classes_)
value = st.selectbox(f"Value for {feature}", values)
value_encoded = label_encoders[feature].transform([value])[0]
pred_values.append(value_encoded)
else:
value = st.number_input(f"Value for {feature}", value=0.0)
pred_values.append(value)
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
if target_name in label_encoders:
prediction = label_encoders[target_name].inverse_transform(prediction)
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")

@ -0,0 +1,29 @@
import streamlit as st
from sklearn.linear_model import LinearRegression
import pandas as pd
st.header("Prediction: Regression")
if "data" in st.session_state:
data = st.session_state.data
with st.form("regression_form"):
st.subheader("Linear Regression Parameters")
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
model = LinearRegression()
model.fit(X, y)
st.subheader("Enter values for prediction")
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")

@ -0,0 +1,6 @@
matplotlib>=3.5.0
pandas>=1.5.0
seaborn>=0.12.0
scikit-learn>=0.23.0
streamlit>=1.35.0
ruff>=0.4.8
Loading…
Cancel
Save