Compare commits
38 Commits
feature/mi
...
main
@ -0,0 +1,44 @@
|
||||
kind: pipeline
|
||||
name: default
|
||||
type: docker
|
||||
|
||||
trigger:
|
||||
event:
|
||||
- push
|
||||
|
||||
steps:
|
||||
- name: lint
|
||||
image: python:3.12
|
||||
commands:
|
||||
- pip install --root-user-action=ignore -r requirements.txt
|
||||
- ruff check .
|
||||
|
||||
- name: docker-image
|
||||
image: plugins/docker
|
||||
settings:
|
||||
dockerfile: Dockerfile
|
||||
registry: hub.codefirst.iut.uca.fr
|
||||
repo: hub.codefirst.iut.uca.fr/bastien.ollier/miner
|
||||
username:
|
||||
from_secret: REGISTRY_USER
|
||||
password:
|
||||
from_secret: REGISTRY_PASSWORD
|
||||
cache_from:
|
||||
- hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
|
||||
depends_on: [ lint ]
|
||||
|
||||
- name: deploy-miner
|
||||
image: hub.codefirst.iut.uca.fr/clement.freville2/codefirst-dockerproxy-clientdrone:latest
|
||||
settings:
|
||||
image: hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
|
||||
container: miner
|
||||
command: create
|
||||
overwrite: true
|
||||
admins: bastienollier,clementfreville2,hugopradier2
|
||||
environment:
|
||||
DRONE_REPO_OWNER: bastien.ollier
|
||||
depends_on: [ docker-image ]
|
||||
when:
|
||||
branch:
|
||||
- main
|
||||
- ci/*
|
@ -1 +1,2 @@
|
||||
__pycache__
|
||||
.venv
|
||||
|
@ -0,0 +1,9 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
EXPOSE 80
|
||||
ENTRYPOINT ["streamlit", "run", "frontend/exploration.py", "--server.port=80", "--server.address=0.0.0.0", "--server.baseUrlPath=/containers/bastienollier-miner"]
|
@ -0,0 +1,83 @@
|
||||
from sklearn.cluster import DBSCAN, KMeans
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
|
||||
@dataclass
|
||||
class ClusterResult:
|
||||
labels: np.array
|
||||
centers: Optional[np.array]
|
||||
statistics: list[dict[str, Any]]
|
||||
|
||||
|
||||
class Cluster(ABC):
|
||||
@abstractmethod
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
pass
|
||||
|
||||
|
||||
class DBSCANCluster(Cluster):
|
||||
def __init__(self, eps: float = 0.5, min_samples: int = 5):
|
||||
self.eps = eps
|
||||
self.min_samples = min_samples
|
||||
|
||||
#@typing.override
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
||||
labels = dbscan.fit_predict(data)
|
||||
return ClusterResult(labels, None, self.get_statistics(data, labels))
|
||||
|
||||
def get_statistics(self, data: np.array, labels: np.array) -> list[dict[str, Any]]:
|
||||
unique_labels = np.unique(labels)
|
||||
stats = []
|
||||
for label in unique_labels:
|
||||
if label == -1:
|
||||
continue
|
||||
cluster_points = data[labels == label]
|
||||
num_points = len(cluster_points)
|
||||
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
||||
stats.append({
|
||||
"cluster": label,
|
||||
"num_points": num_points,
|
||||
"density": density
|
||||
})
|
||||
return stats
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "DBScan"
|
||||
|
||||
|
||||
class KMeansCluster(Cluster):
|
||||
def __init__(self, n_clusters: int = 8, n_init: int = 1, max_iter: int = 300):
|
||||
self.n_clusters = n_clusters
|
||||
self.n_init = n_init
|
||||
self.max_iter = max_iter
|
||||
|
||||
#@typing.override
|
||||
def run(self, data: np.array) -> ClusterResult:
|
||||
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
||||
labels = kmeans.fit_predict(data)
|
||||
centers = kmeans.cluster_centers_
|
||||
return ClusterResult(labels, centers, self.get_statistics(data, labels, centers))
|
||||
|
||||
def get_statistics(self, data: np.array, labels: np.array, centers: np.array) -> list[dict[str, Any]]:
|
||||
unique_labels = np.unique(labels)
|
||||
stats = []
|
||||
|
||||
for label in unique_labels:
|
||||
cluster_points = data[labels == label]
|
||||
num_points = len(cluster_points)
|
||||
center = centers[label]
|
||||
stats.append({
|
||||
"cluster": label,
|
||||
"num_points": num_points,
|
||||
"center": center,
|
||||
})
|
||||
return stats
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "KMeans"
|
||||
|
||||
|
||||
CLUSTERING_STRATEGIES = [DBSCANCluster(), KMeansCluster()]
|
@ -0,0 +1,86 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.metrics import silhouette_score
|
||||
import numpy as np
|
||||
|
||||
st.header("Clustering")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
general_row = st.columns([1, 1, 1])
|
||||
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
|
||||
data_name = general_row[1].multiselect("Columns", data.select_dtypes(include="number").columns)
|
||||
n_components = general_row[2].number_input("Reduce dimensions to (PCA)", min_value=1, max_value=3, value=2)
|
||||
|
||||
with st.form("cluster_form"):
|
||||
if isinstance(clustering, KMeansCluster):
|
||||
row1 = st.columns([1, 1, 1])
|
||||
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
|
||||
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
|
||||
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
|
||||
elif isinstance(clustering, DBSCANCluster):
|
||||
row1 = st.columns([1, 1])
|
||||
clustering.eps = row1[0].slider("eps", min_value=0.0001, max_value=1.0, step=0.05, value=clustering.eps)
|
||||
clustering.min_samples = row1[1].number_input("min_samples", min_value=1, value=clustering.min_samples)
|
||||
|
||||
st.form_submit_button("Launch")
|
||||
|
||||
if len(data_name) > 0:
|
||||
x = data[data_name].to_numpy()
|
||||
n_components = min(n_components, len(data_name))
|
||||
if len(data_name) > n_components:
|
||||
pca = PCA(n_components)
|
||||
x = pca.fit_transform(x)
|
||||
if n_components == 2:
|
||||
(fig, ax) = plt.subplots(figsize=(8, 8))
|
||||
for i in range(0, pca.components_.shape[1]):
|
||||
ax.arrow(
|
||||
0,
|
||||
0,
|
||||
pca.components_[0, i],
|
||||
pca.components_[1, i],
|
||||
head_width=0.1,
|
||||
head_length=0.1
|
||||
)
|
||||
|
||||
plt.text(
|
||||
pca.components_[0, i] + 0.05,
|
||||
pca.components_[1, i] + 0.05,
|
||||
data_name[i]
|
||||
)
|
||||
circle = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
|
||||
ax.add_patch(circle)
|
||||
plt.axis("equal")
|
||||
ax.set_title("PCA result - Correlation circle")
|
||||
st.pyplot(fig)
|
||||
|
||||
result = clustering.run(x)
|
||||
st.write("## Cluster stats")
|
||||
st.table(result.statistics)
|
||||
|
||||
st.write("## Graphical representation")
|
||||
fig = plt.figure()
|
||||
if n_components == 1:
|
||||
plt.scatter(x, np.zeros_like(x))
|
||||
elif n_components == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
if not (result.labels == 0).all():
|
||||
st.write("Silhouette score:", silhouette_score(x, result.labels))
|
||||
else:
|
||||
st.error("Select at least one column")
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@ -0,0 +1,79 @@
|
||||
import streamlit as st
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score,confusion_matrix
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
st.header("Prediction: Classification")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("classification_form"):
|
||||
st.subheader("Classification Parameters")
|
||||
data_name = st.multiselect("Features", data.columns)
|
||||
target_name = st.selectbox("Target", data.columns)
|
||||
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
||||
st.form_submit_button('Train and Predict')
|
||||
|
||||
if data_name and target_name:
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
label_encoders = {}
|
||||
for column in X.select_dtypes(include=['object']).columns:
|
||||
le = LabelEncoder()
|
||||
X[column] = le.fit_transform(X[column])
|
||||
label_encoders[column] = le
|
||||
|
||||
if y.dtype == 'object':
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
label_encoders[target_name] = le
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||
|
||||
model = LogisticRegression()
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
|
||||
st.subheader("Model Accuracy")
|
||||
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
||||
|
||||
st.subheader("Enter values for prediction")
|
||||
pred_values = []
|
||||
for feature in data_name:
|
||||
if feature in label_encoders:
|
||||
values = list(label_encoders[feature].classes_)
|
||||
value = st.selectbox(f"Value for {feature}", values)
|
||||
value_encoded = label_encoders[feature].transform([value])[0]
|
||||
pred_values.append(value_encoded)
|
||||
else:
|
||||
value = st.number_input(f"Value for {feature}", value=0.0)
|
||||
pred_values.append(value)
|
||||
|
||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||
|
||||
if target_name in label_encoders:
|
||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||
|
||||
st.write("Prediction:", prediction[0])
|
||||
|
||||
if len(data_name) == 1:
|
||||
fig = plt.figure()
|
||||
|
||||
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
||||
cm = confusion_matrix(y, y_pred)
|
||||
|
||||
sns.heatmap(cm, annot=True, fmt="d")
|
||||
|
||||
plt.xlabel('Predicted')
|
||||
plt.ylabel('True')
|
||||
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("File not loaded")
|
@ -0,0 +1,63 @@
|
||||
import streamlit as st
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.metrics import r2_score
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
st.header("Prediction: Regression")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("regression_form"):
|
||||
st.subheader("Linear Regression Parameters")
|
||||
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
||||
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
||||
st.form_submit_button('Train and Predict')
|
||||
|
||||
if data_name and target_name:
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
model = LinearRegression()
|
||||
model.fit(X, y)
|
||||
|
||||
st.subheader("Enter values for prediction")
|
||||
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||
|
||||
st.write("Prediction:", prediction[0])
|
||||
|
||||
fig = plt.figure()
|
||||
dataframe_sorted = pd.concat([X, y], axis=1).sort_values(by=data_name)
|
||||
|
||||
if len(data_name) == 1:
|
||||
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
||||
r2 = r2_score(y, y_pred)
|
||||
st.write('R-squared score:', r2)
|
||||
|
||||
X = dataframe_sorted[data_name[0]]
|
||||
y = dataframe_sorted[target_name]
|
||||
|
||||
prediction_array_y = [
|
||||
model.predict(pd.DataFrame([[dataframe_sorted[data_name[0]].iloc[i]]], columns=data_name))[0]
|
||||
for i in range(dataframe_sorted.shape[0])
|
||||
]
|
||||
|
||||
plt.scatter(dataframe_sorted[data_name[0]], dataframe_sorted[target_name], color='b')
|
||||
plt.plot(dataframe_sorted[data_name[0]], prediction_array_y, color='r')
|
||||
elif len(data_name) == 2:
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
|
||||
prediction_array_y = [
|
||||
model.predict(pd.DataFrame([[dataframe_sorted[data_name[0]].iloc[i], dataframe_sorted[data_name[1]].iloc[i]]], columns=data_name))[0]
|
||||
for i in range(dataframe_sorted.shape[0])
|
||||
]
|
||||
|
||||
ax.scatter(dataframe_sorted[data_name[0]], dataframe_sorted[data_name[1]], dataframe_sorted[target_name], color='b')
|
||||
ax.plot(dataframe_sorted[data_name[0]], dataframe_sorted[data_name[1]], prediction_array_y, color='r')
|
||||
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("File not loaded")
|
@ -0,0 +1,6 @@
|
||||
matplotlib>=3.5.0
|
||||
pandas>=1.5.0
|
||||
seaborn>=0.12.0
|
||||
scikit-learn>=0.23.0
|
||||
streamlit>=1.35.0
|
||||
ruff>=0.4.8
|
Loading…
Reference in new issue