Compare commits

...

20 Commits

Author SHA1 Message Date
Hugo PRADIER 2d1c867bed ajout prediction classification
10 months ago
Hugo PRADIER a914c3f8f9 prediction de regression terminee
10 months ago
Hugo PRADIER 70641ebca4 debut prediction
10 months ago
Bastien OLLIER e5f05a2c8a Mise à jour de 'frontend/pages/clustering_kmeans.py'
10 months ago
Bastien OLLIER 972fde561f Mise à jour de 'frontend/pages/clustering_dbscan.py'
10 months ago
Bastien OLLIER 694ecd0eef Merge pull request 'Visualize clusters in 3d' (#6) from cluster3d into main
10 months ago
Bastien OLLIER e255c67972 Merge pull request 'Implement base missing values strategies' (#3) from feature/missing-values into main
10 months ago
Bastien OLLIER e48c3bfa50 add 3d plot to bdscan
10 months ago
Bastien OLLIER 52cb140746 add 3d to kmeans
10 months ago
Clément FRÉVILLE 6dcca29cbd Rename to original_data
10 months ago
Bastien OLLIER c1f5e55a0b Merge pull request 'clustering' (#5) from clustering into main
10 months ago
Bastien OLLIER 34f70b4d79 delete np
10 months ago
Bastien OLLIER 64cf65a417 max nb cluster to nb line
10 months ago
Bastien OLLIER d4e33e7367 dbscan
10 months ago
Bastien OLLIER 72dcc8ff1c add dbscan
10 months ago
Bastien OLLIER 9fc6d7d2d1 add dbscan
10 months ago
Clément FRÉVILLE a325603fd9 Add scaling strategies
10 months ago
Bastien OLLIER 197939555c debut dbscan
10 months ago
Clément FRÉVILLE 5f960df838 Support Pandas linear regression
11 months ago
Clément FRÉVILLE 63bce82b3b Implement base MissingValues strategies
11 months ago

2
.gitignore vendored

@ -0,0 +1,2 @@
__pycache__
.venv

@ -13,6 +13,7 @@ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
if uploaded_file is not None:
st.session_state.data = pd.read_csv(uploaded_file)
st.session_state.original_data = st.session_state.data
st.success("File loaded successfully!")

@ -0,0 +1,138 @@
from abc import ABC, abstractmethod
from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype
from typing import Any, Union
class DataFrameFunction(ABC):
"""A command that may be applied in-place to a dataframe."""
@abstractmethod
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
"""Apply the current function to the given dataframe, in-place.
The series is described by its label and dataframe."""
return df
class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
return choices
class ScalingStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [KeepStrategy()]
if is_numeric_dtype(series):
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
if series.sum() != 0:
choices.append(UnitLengthStrategy())
return choices
class DropStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df.dropna(subset=label, inplace=True)
return df
def __str__(self) -> str:
return "Drop"
class PositionStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
series.fillna(self.get_value(series), inplace=True)
return df
@abstractmethod
def get_value(self, series: Series) -> Any:
pass
class MeanStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.mean()
def __str__(self) -> str:
return "Use mean"
class MedianStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.median()
def __str__(self) -> str:
return "Use median"
class ModeStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Any:
return series.mode()[0]
def __str__(self) -> str:
return "Use mode"
class LinearRegressionStrategy(MVStrategy):
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
series.interpolate(inplace=True)
return df
def __str__(self) -> str:
return "Use linear regression"
class KeepStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
return df
def __str__(self) -> str:
return "No-op"
class MinMaxStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
minimum = series.min()
maximum = series.max()
df[label] = (series - minimum) / (maximum - minimum)
return df
def __str__(self) -> str:
return "Min-max"
class ZScoreStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = (series - series.mean()) / series.std()
return df
def __str__(self) -> str:
return "Z-Score"
class UnitLengthStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = series / series.sum()
return df
def __str__(self) -> str:
return "Unit length"

@ -1,35 +0,0 @@
import streamlit as st
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
st.header("Clustering")
if "data" in st.session_state:
data = st.session_state.data
with st.form("my_form"):
row1 = st.columns([1,1,1])
n_clusters = row1[0].selectbox("Number of clusters", range(1, 10))
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2)
n_init = row1[2].number_input("n_init",step=1,min_value=1)
row2 = st.columns([1,1])
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
st.form_submit_button('launch')
if len(data_name) == 2:
x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init='random', n_init=n_init, max_iter=max_iter, random_state=111)
y_kmeans = kmeans.fit_predict(x)
fig, ax = plt.subplots(figsize=(12,8))
plt.scatter(x[:, 0], x[:, 1], s=100, c=kmeans.labels_, cmap='Set1')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=400, marker='*', color='k')
st.pyplot(fig)
else:
st.error("file not loaded")

@ -0,0 +1,35 @@
import streamlit as st
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
st.header("Clustering: dbscan")
if "data" in st.session_state:
data = st.session_state.data
with st.form("my_form"):
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
st.form_submit_button("launch")
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
y_dbscan = dbscan.fit_predict(x)
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
st.pyplot(fig)
else:
st.error("file not loaded")

@ -0,0 +1,44 @@
import streamlit as st
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
st.header("Clustering: kmeans")
if "data" in st.session_state:
data = st.session_state.data
with st.form("my_form"):
row1 = st.columns([1,1,1])
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
n_init = row1[2].number_input("n_init",step=1,min_value=1)
row2 = st.columns([1,1])
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
st.form_submit_button("launch")
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
y_kmeans = kmeans.fit_predict(x)
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig)
else:
st.error("file not loaded")

@ -0,0 +1,32 @@
import streamlit as st
from normstrategy import MVStrategy, ScalingStrategy
if "data" in st.session_state:
data = st.session_state.original_data
st.session_state.original_data = data.copy()
for column, series in data.items():
col1, col2 = st.columns(2)
missing_count = series.isna().sum()
choices = MVStrategy.list_available(data, series)
option = col1.selectbox(
f"Missing values of {column} ({missing_count})",
choices,
index=1,
key=f"mv-{column}",
)
# Always re-get the series to avoid reusing an invalidated series pointer
data = option.apply(data, column, data[column])
choices = ScalingStrategy.list_available(data, series)
option = col2.selectbox(
"Scaling",
choices,
key=f"scaling-{column}",
)
data = option.apply(data, column, data[column])
st.write(data)
st.session_state.data = data
else:
st.error("file not loaded")

@ -0,0 +1,63 @@
import streamlit as st
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
st.header("Prediction: Classification")
if "data" in st.session_state:
data = st.session_state.data
with st.form("classification_form"):
st.subheader("Classification Parameters")
data_name = st.multiselect("Features", data.columns)
target_name = st.selectbox("Target", data.columns)
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
label_encoders = {}
for column in X.select_dtypes(include=['object']).columns:
le = LabelEncoder()
X[column] = le.fit_transform(X[column])
label_encoders[column] = le
if y.dtype == 'object':
le = LabelEncoder()
y = le.fit_transform(y)
label_encoders[target_name] = le
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
st.subheader("Model Accuracy")
st.write(f"Accuracy on test data: {accuracy:.2f}")
st.subheader("Enter values for prediction")
pred_values = []
for feature in data_name:
if feature in label_encoders:
values = list(label_encoders[feature].classes_)
value = st.selectbox(f"Value for {feature}", values)
value_encoded = label_encoders[feature].transform([value])[0]
pred_values.append(value_encoded)
else:
value = st.number_input(f"Value for {feature}", value=0.0)
pred_values.append(value)
prediction = model.predict([pred_values])
if target_name in label_encoders:
prediction = label_encoders[target_name].inverse_transform(prediction)
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")

@ -0,0 +1,28 @@
import streamlit as st
from sklearn.linear_model import LinearRegression
st.header("Prediction: Regression")
if "data" in st.session_state:
data = st.session_state.data
with st.form("regression_form"):
st.subheader("Linear Regression Parameters")
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
model = LinearRegression()
model.fit(X, y)
st.subheader("Enter values for prediction")
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
prediction = model.predict([pred_values])
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")
Loading…
Cancel
Save